L12_WaitingTime_B4 - Lecture 12 Waiting Time Problems Slide...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Slide 1 Lecture 12 Waiting Time Problems
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Slide 2 Le a rning  O b je c tive s Analyze stationary arrival queues Predict waiting times and quantify performance metrics Redesign service systems to reduce variability
Background image of page 2
Slide 3 Waiting time in a Stationary Queue
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Slide 4 Arrival On average, a flow unit arrives every  a  time units, or  1/a  flow units arrives per  unit of time .    The standard deviation of the inter-arrival time is  σ a . The coefficient of variation is  CV a a /a . Process There are   servers (resource) in the system It takes an average of  p  units of time to serve a flow unit, or  1/p  flow units can  be processed per unit of time. The standard deviation of the processing time is   p . The coefficient of variation is  CV p /p . Assumptions   Stationary Queuing System
Background image of page 4
Slide 5 Performance Measures  Stationary Queuing System Stable   average demand rate = 1/a < m/p  = average capacity I q   = flow units (inventory) in the queue or queue length I p  = flow units (inventory) in service I  = flow units (inventory) in the system T q  = waiting time while in the queue T  = flow time Arrival (demand) a  (time/unit) 1/a   (unit/time) CV a   σ a /a Process (resource) m  servers/resources p   (time / unit)   1/p   (unit / time) CV p /p ……
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Slide 6 Example: RentAPhone The company currently has 80 phones. There are , on average, 25 customers per day  (24 hours) requesting a phone.  The corresponding coefficient of variation is 1.  Customers keep their phones on average 72 hours. The standard deviation of this time  is 100 hours.  a  = 24/25=0.96 hr/customer 1/a  = 25/24 customer/hr CV a  =1 m  = 80   p  = 72 hr/customer 1/p  = 1/72 customer/hr CV p  = 100/72=1.3889 Utilization : …… Flow rate: 
Background image of page 6
Slide 7 Example: RentAPhone cont = × = q q T r I = × = p r I p Waiting time : = + - - + 2 1 2 2 1 ) 1 ( 2 p a m q CV CV u u m p T Flow time : = + = p T T q Inventory in queue : Total inventory : Inventory in service : = × = × = T a T r I 1 a  = 24/25=0.96 hr/customer 1/a  = 25/24 customer/hr CV a  =1 m  = 80   p  = 72 hr/customer 1/p  = 1/72 customer/hr CV p  = 100/72=1.3889 ……
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Slide 8 Example: RentAPhone cont  Waiting inventory incurs a carrying cost of $1 per unit per hour a  = 24/25=0.96 hr/customer 1/a  = 25/24 customer/hr CV a  =1 m  = 80   p  = 72 hr/customer 1/p  = 1/72 customer/hr CV p  = 100/72=1.3889 …… Company pays $1 per hour to provide phone cards to each waiting customer. What is  the total monthly expense for phone cards?
Background image of page 8
Slide 9 Example: RentAPhone cont  Redo the computation with m = 81, we obtain
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 10/16/2011 for the course OM 335 taught by Professor Jonnalagedda during the Fall '08 term at University of Texas at Austin.

Page1 / 26

L12_WaitingTime_B4 - Lecture 12 Waiting Time Problems Slide...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online