This preview shows page 1. Sign up to view the full content.
Unformatted text preview: is 40 cm. The speed of the wave is v = (F/ ) = 28.3 m/s. The angular frequency is = vk = v(2 / ) = 445 rad/s The transverse velocity is the time derivative of the displacement. We get vt(x,t) = dy/dt = y m cos(kx  t + ) Cosine function changes from 1 to 1. Therefore, the maximum transverse velocity is v t,max = y m = 44.5 m/s b) Find the phase constant . The graph shows the displacement at t = 0. The wave equation at t = 0 is y(x,0) = y m sin(kx + ). At x = 0, the displacement is y s . Therefore, the phase constant is y(0,0)  = y m sin( ) = y s = sin1 (y s /y m ) = 233 or 307 Now we need to choose one of them. At x = 0, the slope of the graph is negative. This leads to dy/dx (0,0) = k y m cos( ) < 0 90 < < 270 The phase constant is 233....
View
Full
Document
This note was uploaded on 01/25/2011 for the course PHY 2048 taught by Professor Field during the Summer '08 term at University of Florida.
 Summer '08
 Field
 Work

Click to edit the document details