MTH132-Test1-Sol

# MTH132-Test1-Sol - Page 1 2008—9—12 Name (Print...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Page 1 2008—9—12 Name (Print Clearly): Student Number: MTHl32 Section 5 & 18, Test 1 Sept 15, 2008 Instructor: Dr. W, Wu Instructions: Answer the following questions in the space provided. There is more than adequate space provided to answer each question. The total time allowed for this quiz is 50 minutes. 1 [4 pts each]. Find the following limits. x/x2+2—x +x—l «,m a, (a) lim x—>O x2 Page 2 2008-9-12 2 [5 pts each]. If (x) 2 1/4; , please evaluate the limit of the form gnaw , ti. My) y “a {r l i? ‘3 V m {it f A ‘ :V I w»~A-_*M“*Wm'mmm’m w e ‘ mum-w» f "I 9 , r, r ,. .c '. awn} 2§R§54L1Wi1 lit?- “w 1151 3 [10 pts]. Please use the intermediate value theorem to show that the equation cos(2x) — Zsin x = 0 has a solution. Page 3 2008—94 2 x2 — 3 4 [5 pts each]. Suppose y = —— . x — 2 (21) Find the asymptotes of this function. ? ,7 Q ., e» "T? g . .Miww“:“ “:4 3% "5* \”““‘°”*‘*%’*‘ W 7“: J' :1 AM» in“ i v : “W WM 5 (b) Find the dominant terms and sketch the graph of this function. ., .t < « . a 3 W M 5 w, v 2' p {I}: 3 M3? ~3- m‘fﬁ WM; ,9; -~§~ if) N ,«g’g‘pvmgmzﬂw “‘E‘ﬁi rm. 5 W; 33 ~17 2m 5 i “‘3?” 11* gr” i m ’5 J? a 4 ‘ ‘ v A . 4 w , u -. w “W” W “v , 1 t ' 1"” MM ’5 2*; W??? ‘” . Heow ﬁi-‘J’ih’ mite” igfﬂﬁ‘ i 3 “3623; j. A z” ._ gm.“ r1 k x‘: \. , a 5 , a «4L VI A“ 9 I N is“ 1% w {11% “:a "“a c ‘* 3 2V “:2 V , “V” ’ i a f g Us :3: mix .2 :3! was». w. “ v? ' W Now (I; s r We». " “I \t ,Xﬁxf‘ K 9.7 (x 1 ix“ , :y “3; {xi ,,.§._ 3 Hamil «J m «é» “3 .x } “ ' (in. 5‘ w} .v {:43 ’3; MA Wiv— 33 Me 2.3: 5 [5 pts each]. At which points are each of the following functions continuous? x+1 a = ———————— () y x2+x—2 Page 4 2008—9-12 »~ \ x" v f \ “‘7‘ 7‘ a? X», i .3. . . - w... M ,, \ : “"3? 1?“ W a x . m ., sm 5' >9 a _ A 4" X “F « {'1 x 1 if“ a r "T" g a] , “R f E 2‘ Q ‘ “me Q; “2i :_ T; 5? i’ " a a ‘.€/f/€Zﬁr’\, f; 1%” m u?» M " . 2 _‘ 6 [10 pts]. Use the Sandwich Theorem to ﬁnd limﬂngx—gl X—)w x _ ‘ ‘ “X m} {>53 .3 *“s a“? j ‘3 A; ~ ~’ A i “a h s . A « 47° «evvwiwg m; Eff {3“ y J y w“ '3 y ‘ 1 4m 1 3? _ ,-’\ w (“V f“, A?» w “‘1 A; " ' {pinata}; emf: I); j 3 V3“: \w’ i” m“ r“ f 7 m «Kym f} “ 2% gr " ml 2‘: “:3 "a (D f a q :31 . w, 5 f M; {5‘1} ,5 y ,5 w {J W Egg? "7? iii/ah .wwwmanJWM’Lﬂmw,” WM (“mvmummﬂ M. g; {55 a,” ‘2 K. ’ 4 W mi ‘““'N {mm-v; 3 ‘ \$1.3 m i» ' ‘ é" ” “j 5d; «ﬁg/wigs; 5:“ ...
View Full Document

## This note was uploaded on 10/17/2011 for the course MTH 133 taught by Professor Staff during the Fall '08 term at Michigan State University.

### Page1 / 4

MTH132-Test1-Sol - Page 1 2008—9—12 Name (Print...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online