M670_4(Discrete Distributions)

M670_4(Discrete Distributions) - Discrete Probability...

Info icon This preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
  1 Discrete Probability Distributions k MGMT 670: Business Analytics Krannert School of Management Purdue University
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
  2 Random Variables § Numerical description of the outcome of an experiment § Classified as either  discrete  or  continuous § Discrete random variable : either a finite number of  values or an infinite sequence of values such as 0, 1, 2,  3, …. § Continuous random variable : any numerical value in  an interval or collection of intervals.
Image of page 2
  3 Examples of Discrete Random Variables § Experiment : Make 100 sales calls, and record the  number of sales made. Possible values: 0, 1, 2, 3, …, 100 § Experiment : Operate a restaurant for one day, and  record the number of customers entered. Possible values: 0, 1, 2, 3, … § Experiment : Sell an automobile, and record the  gender of the customer. Possible values: male, female
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
  4 Examples of Continuous Random Variables § Experiment : Operate a bank, and record the time  between customer arrivals ( X ). Possible values:   X  ‡  0. § Experiment : Observe a machine’s working hours, and  record the utilization rate in an eight-hour workday  ( Y ). Possible values:  0 £   Y  £  100%
Image of page 4
  5 Discrete Probability Distributions § List of all possible pairs of ( xi, f(xi  ))  where xi  = a value of the random variable  X f ( xi ) = probability of getting value of  xi § f ( xi ) is referred to as the  probability mass function . § Conditions for the probability mass function: § Described with a table, graph, or equation . 1 ) ( 1 ) ( 0 = i i i x f x f
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
  6 Example: Oil Commodities § A commodities investor is concerned with the price of oil  for the coming year. § The investor believes there are four possible scenarios for  the oil market in the coming year: high demand, moderate  demand, no growth, or moderate contraction. § She estimates that the price of oil per barrel in each case  will be $78, 73, 63, and 50, respectively. § Also, she has assessed that the probabilities of these  outcomes are 0.10, 0.50, 0.25, and 0.15,                respectively.
Image of page 6
  7 Distribution of Oil Price (X) Economic Outcome Price,  xi Probability High Demand 78 0.10 Moderate Demand 73 0.50 No Growth 63 0.25 Moderate Contraction 50 0.15 Total 1.00
Image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
  8 Expected Value of Discrete Random Variable § Weighted average of all possible values = = i i i x f x X E ) ( ) ( μ x i p ( x i ) x i  p ( x i ) 78 0.10  7.80  73 0.50  36.50  63 0.25  15.75  50 0.15  7.50  Sum 1.00  67.55  E ( X )
Image of page 8
  9 Variance of Discrete Random Variable § Weighted average of squared deviations from the mean ( 29 ( 29 2 2 2 Var ( ) ( ) i i i (X)σ E X E X x E X f(x ) = = - = - x i p ( x i ) x i   p ( x i ) ( x i  -  μ ) 2 ( x i  -  μ ) 2 p ( x i ) 78 0.10  7.80  109.2025 10.920  73 0.50  36.50  29.7025 14.851  63 0.25  15.75  20.7025 5.176  50 0.15  7.50  308.0025 46.200  Sum 1.00  67.55  77.148  σ 2
Image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
  10 Covariance § Measure of the  linear association
Image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern