5.2 - Systems of Linear Equations in Two Variables

5.2 - Systems of Linear Equations in Two Variables -

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>5.2 - Systems of Linear Equations in Two Variables</title> <link href=". ./m116.css" rel="stylesheet" type="text/css" /> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <style type="text/css"> <!-- td { padding-top: 0.25em; padding-right: 1em; padding-bottom: 0.25em; padding-left: 1em; border: 1px solid #666666; text-align: right; vertical-align: top; } th { padding-top: 0.25em; padding-right: 1em; padding-bottom: 0.25em; padding-left: 1em; border-top-width: 1px; border-right-width: 1px; border-bottom-width: medium; border-left-width: 1px; border-top-style: solid; border-right-style: solid; border-bottom-style: solid; border-left-style: solid; border-top-color: #666666; border-right-color: #666666; border-bottom-color: #666666; border-left-color: #666666; background-color: #FFFFCC; text-align: right; vertical-align: top; } .sum { color: #000000; text-align: right; vertical-align: top; padding-top: 0.25em; padding-right: 1em; padding-bottom: 0.25em; padding-left: 1em; border-top-width: thin; border-right-width: 1px; border-bottom-width: 1px; border-left-width: 1px; border-top-style: solid; border-right-style: solid; border-bottom-style: solid; border-left-style: solid; border-top-color: #666666; border-right-color: #666666; border-bottom-color: #666666; border-left-color: #666666; background-color: #FFFFCC; } --> </style>
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
</head> <body> <h1>5.2 - Systems of Linear Equations in Two Variables</h1> <h2>Addition / Elimination</h2> <p>The idea behind the addition / elimination method is to multiple one or more equations by a constant so when they are added together, one of the variables eliminates. Then you have one equation with one variable and you can solve for that variable. </p> <ol> <li>Choose a variable to eliminate. Usually the variable that can be eliminated by multiplying by smaller numbers is the better choice.</li> <li>Multiply one or both equations by a constant so that the least common multiple of the coefficients on the variable to be eliminated is obtained. Care should be taken so that one coefficient becomes negative and the other is positive.</li> <li>Add the two equations together so the variable is eliminated.</li> <li>Solve the resulting equation for the remaining variable.</li> <li>Back-substitute that value into the one of the two original equations to find the remaining variable.</li> <li>Check your answer into the other equation.</li> </ol> <p>As an alternative to step 5, and this is extremely helpful when the answer
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 10/18/2011 for the course MAT 1033 taught by Professor Brown during the Spring '10 term at Valencia.

Page1 / 5

5.2 - Systems of Linear Equations in Two Variables -

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online