finalformulas

# finalformulas - Formula sheet for ﬁnal exam in calc IV...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Formula sheet for ﬁnal exam in calc IV, summer 2007 Polar coordinates x = r cos θ y = r sin θ r2 = x2 + y 2 dA = rdrdθ Cylindrical coordinates x = r cos θ y = r sin θ r2 = x2 + y 2 dV = rdzdrdθ Spherical coordinates x = ρ sin φ cos θ y = ρ sin φ sin θ z = ρ cos φ ρ2 = x2 + y 2 + z 2 dV = ρ2 sin φdρdθdφ Change of variables in 2 dimensions f (x, y ) dAx,y = R (f ◦ T )(u, v )|J (T )| dAu,v ; J (T ) = S ∂ (x,y ) ∂ (u,v ) = ∂x ∂u ∂y ∂u ∂x ∂v ∂y ∂v , the Jacobian. Change of variables in 3 dimensions R f (x, y, z ) dVx,y,z = S (f ◦ T )(u, v, w)|J (T )| dVu,v,w ; J (T ) = ∂ (x,y,z ) ∂ (u,v,w) = ∂x ∂u ∂y ∂u ∂z ∂u ∂x ∂v ∂y ∂v ∂z ∂v ∂x ∂w ∂y ∂w ∂z ∂w Line Integrals C f (x, y )ds = b a dx 2 dt f ((x(t), y (t)) + dy 2 dt dt b a F · dr = F(r(t)) · r (t) dt b P (x, y ) dx + Q(x, y )dy = a P (x(t), y (t))x (t) dt + Q(x(t), y (t))y (t) dt C C Green’s Theorem C P dx + Q dy = R ∂Q ∂x − ∂P ∂y dA Surface/Flux Integrals f (x, y, z ) dS = D f (r(u, v ))|ru × rv | dAuv = D f (r(u, v )) |ru |2 |rv |2 − (ru · rv )2 dAuv S ˆ F · dS = S F · n dS = D F(r(u, v )) · (ru × rv ) dAuv S ∂r ∂r Parametrically: r(u, v ) = x(u, v )i + y (u, v )j + z (u, v )k, ∂u × ∂v is a normal to S , dS = ∂r ∂r | ∂u × ∂v | dAuv , |ru × rv | = |ru |2 |rv |2 − (ru · rv )2 so if the parametrization is orthogonal (ie ru · rv = 0) then dS = |ru × rv | = |ru ||rv |. As graph: z = f (x, y ), − ∂f i − ∂x ∂f j ∂y + k is a normal to S , dS = ∂ ∂ ∂ = i ∂x + j ∂y + k ∂z Stokes’ Theorem ˆ ( × F) · n dS = S ∂S F · dr Divergence Theorem ˆ · F dV = ∂ E F · n dS E 1 ∂f 2 ∂x + ∂f ∂y 2 + 1 dAxy . ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online