This preview shows page 1. Sign up to view the full content.
Unformatted text preview: 4, where you can have orthogonal matrices which are simultaneously rotations about dierent axes, which cannot be written as a rotation about a single axis. 3. (3 points) Show that every matrix A M n n with determinant 1 has a unique factorization A = RH where R is an orthogonal matrix with determinant 1 (ie, R T = R1 ) and H is a symmetric, positivedenite matrix with determinant 1 (that is, H T = H and h x,Hx i 0 for all x R n with equality if and only if x = 0). You may assume that every real symmetric matrix is real diagonalizablea fact which we will hopefully discuss in class. 4. (3 points) Consider R n with its standard inner product. Let U and T be symmetric n n matrices. Suppose that UT = TU . Show that there exists an orthonormal basis for R n consisting of eigenvectors for both U and T . In other words, we may simultaneously diagonalize U and T . 1...
View Full
Document
 Spring '10
 Peters

Click to edit the document details