Blasius_Boundary.nb

Blasius_Boundary.nb - B uy @ h D , 8 h , 0, h Big 2...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Blasius Boundary Layer APPH 4200 Physics of Fluids Columbia University Similarity Equation In[1]:= eq = f @ h D D @ f @ h D , 8 h , 2 <D ê 2 + D @ f @ h D , 8 h , 3 <D ã 0 Out[1]= 1 2 f @ h D f ££ @ h D + f H 3 L @ h D ã 0 In[2]:= h Big = 25.0; In[3]:= bc = 8 f' @ h Big D ã 1, f @ 0 D ã 0, f' @ 0 D ã 0 < Out[3]= 8 f £ @ 25. D ã 1, f @ 0 D ã 0, f £ @ 0 D ã 0 < Finding the Solution In[4]:= sol = NDSolve @8 eq < ~ Join ~ bc, f, 8 h , 0, h Big <D Out[4]= 88 f Ø InterpolatingFunction @88 0., 25. << , <> D<< Graph the Solution In[5]:= fBlasius = f ê . First @ sol D Out[5]= InterpolatingFunction @88 0., 25. << , <> D In[6]:= gBlasius @ h _ D = D @ fBlasius @ h D , h D Out[6]= InterpolatingFunction @88 0., 25. << , <> D@ h D In[7]:= Plot @ fBlasius @ h D , 8 h , 0, h Big < , PlotLabel Ø "f @ h D " D Out[7]= 5 10 15 20 25 5 10 15 20 f @ h D
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
In[8]:= Plot @ gBlasius @ h D , 8 h , 0, h Big ê 2 < , PlotLabel Ø "g @ h D ", PlotRange Ø All, AxesLabel Ø 8 " h ", "u ê U " <D Out[8]= 2 4 6 8 10 12 h 0.2 0.4 0.6 0.8 1.0 u ê U g @ h D Cross Velocity Normalized to the Re … In[9]:= uy @ h _ D = H 1 ê 2 L H h gBlasius @ h D - fBlasius @ h DL Out[9]= 1 2 H - InterpolatingFunction @88 0., 25. << , <> D@ h D + h InterpolatingFunction @88 0., 25. << , <> D@ h DL In[10]:= Plot
Background image of page 2
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: B uy @ h D , 8 h , 0, h Big 2 &lt; , PlotLabel &quot;Normalized u y @ h D &quot;, PlotRange All, AxesLabel : &quot; h &quot;, &quot; H u y U L Re &quot; &gt;F Out[10]= 2 4 6 8 10 12 h 0.2 0.4 0.6 0.8 H u y U L Re Normalized u y @ h D Normalized Shear Stress At the plate surface In[11]:= D @ gBlasius @ h D , h D . h Out[11]= 0.332057 2 Blasius_Boundary.nb Summary Blasius provided the mathematically rigorous &quot;similiarity&quot; solution to the boundary layer thickness for uniform flow along a fixed plate. The similiarity transformation creates an nonlinear ordinary differential equation that can be easily integrated. Blasius_Boundary.nb 3...
View Full Document

This document was uploaded on 10/18/2011.

Page1 / 3

Blasius_Boundary.nb - B uy @ h D , 8 h , 0, h Big 2...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online