Lecture-8

# Lecture-8 - APPH 4200 Physics of Fluids Problem Solving and...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: APPH 4200 Physics of Fluids Problem Solving and Vorticity (Ch. 5) October 4, 2011 1.! ! Quick Review 2.! Vorticity 3.! Kelvin’s Theorem 4.! Examples 1 How to solve ﬂuid problems? How To S'òL-vl rLUi,¿ Pflc!IJLErl5? d) (A1 lJ::A-! /1-- òC:E ( AJ 0.. oI '"~-r í1 ò dic ') (Like those in textbook) Ç"Tt=l ~ I fJ t c.t u /Z t2 A D iI;4 Lv ~ tv (L (TE p Ô t- /V A- L- L I~ ~ ò C- A. 6 E 0 J/ £-rlf A I' io f-OJi c. ( "- '1 S \$T1P#( ~~ _ r ç TH i S A 1) T ¡v A. ,CA-L ¿) t1 çrTI ( f If ¿i ~ '- E.. ? ~ o~ TOY /VA t- (c .) A il l' ç (. L ve.L (J -t L( .l ~( 7 A--- ò~ æ~ L lÍ ~ S' t) TH &2 \.' ': 0 l2 (¿ &...A ~C¿)) lj rf c A J) e Å."- '- 1- t~ P Yl () -1 c. c."" ~ rl t7 Âd (. c. lf r1 c).l tf ,c t F l'c ( C U t- 'r . ç-r;: ,#3 ç Ec.tZLI -lK ;10\7 ~C)".vEf'(tE4Â7 LOù.l~/.-A-~ ç (" S Te p. . C' A. -r ~ C 01/ ¡J L( A. t=A- cE 0 d /ê ". r A. .A~ S / N /Tle/'0 i x. (J. ') Ç(¡i it l+ C tAr\ Y ()v .i CJ- A- ç N¡i L '( GO;. S E-I? V iA(l Ò A- pI! ( ~ C ( ,oL C S rk 0 -' IS.- T "" ".1 #/V '7 v l ~ "'Ò '" ;£~ (v ~r E-"IS ft-' r ) p Il ( __ c ( to L If (è ~ò Â, Ç( pf.;AJ It A- i/ ~ c-GQ òi,J L L L f S Y¿L)/l SDLU(fdl--: Ç'7E rP t: ç- ftiL l t¿ l!J /Z / A.u ,7' è) ., ( 2 8 N -l l - J J :t Hints with HW #2 (i .. ~ -l ç: il ~ \~ ~ ì 1 d) ì J \J r. * ~ t~ ~ J t: li. ~ i o " t 1~ I) It . .. ~ \: .. J J II ~ 'l ~ cC 1I IJ, ~ ~ ~ ~~ ~ ! v Q I. L ./ 1 '- .. ~ )~ ~~ o1 ~v~ ~ '5 fu ~ IL 1 iJ ~ V' r. y. ~ \. Õ "u ! .. ~ I. ~ (.: ~ \¿ () ( ~Jl 'v c: o \. -. -: .. a- o ~ -0 a. sf) ') i )- ~ ~ ~\.J ~ \ \I \ t 7j-- \ \Jfrtt~ \ \ -! "- '" ''- ~ t t" -. :: es 1\ , \. " r. ~ c. ~l.- ~ ~ -- ~ \s\~ J \¡ j r. \i \ ~ \i ¡- -c ;: i r \. \ .J \. '\ \ '\ \. ~"li '\. I '\ ~ ~ '\ t,:¡ --- '( ~ \. \ ! ...1 .. 3\ ~~ ~~ \L il ~ t: it i lJ . .J I~-c j ";~ ~~ .: I4 l¡ ~~~ Y. ~ C1 ': ~ ') ~ t " - \J v a ,J /" ~ l" ~~ ~ u1 N \,. ~ ,J I. o ~ 4. ~ . -. ~ \l'J ,-, ,~ 'U ~ ~ ti: JI ~ tv::; ¿ \\ '! ~ ~ \6 '; II ~ :i -t ~ ~ .3 3 ! J /" G t \J - '- I.. )- Q ~ j- l V' .. 0 ,.. . L. Vorticity Dynamics . vA -. .J -: ~ . I~ II Q \~ -i ~ 'Û .j (U ~ 0 ~ t J ../ () ,J '.. lÙ lL "= ù F lrJ 'J 't :i ,~ )- )~ 1.. ~ - ~ 'C f- ~ ~ II ~ 'I \ c: i :J r¡r- -i \ ~ i~ -If' "t I :: (' ~ , + (V ~ ~ '-,f' ~ I ~ L b. -l-a i I tr II 13' 'j l~ + 1"3 \-. J (" ~ L X 1/ Il\ ~ ~ , l/ I :: (\ ~ 'X I\: Z '\ r1:5 y. l~ "~ ~ + I~\~ . ~~ ~ ~ \\ /' I :J y. 1~ '- X b- .. \~\ .u (ò C' -- -l l. l=- J 1: ?\$ \L ~ v .. 1- ~ el ~ (Remember the importance of viscosity.) 4 ~ J ~ -0 Ç) "C ( V' ~ .J U- -. .. ~ ~ F- '0 Simple (2D) Fluid Rotation " 'i l~ ~ ~ 0 d 0 ~ Q, ~ v - ~ ~ ~ -- -. )CJ 'f ~ ~ 0 ) w ~ - -i '- () ? .. l r- ~ 1- r: ~ Il .Cl "- .. i ~ 0 ¡:.. , 0 II ~ ~ II fi S y Q~ .. ~ ~ 'i ~ J i lL )l .~ " ~ .~ J ~ t' r ~ j ,'- ,. j, ,~ \l , 1 '- 0' .. ~ rII \D ~ ~ J V\ -; \J - \I - Q :, ,.. L. ." Jl ~ ~k iv ./ \) v ) " '" ev 0 ~ ~ ~ '\I \I - c --...~ ). "0 ,: t ~, :) \. \) .. l~ ~ \I CJ .. -( ~ C Q U V\ i. .- \p ~ '- j l\ -- ~ .. ~ (J ~ () ~ g .. -' \t ~ I~ r. /3 i ri 1 l( , l. ~ 1~ .s 0 C: \... oJ - rI-' (j il ~ \f 0 oJ Q ~~ VI ~ lL I\ I:. ~ -~ ~ to .. a '; L- t CJi ~ Oö ) 0 - (- i t ~ 0 \~ \J - \I (' ~ lo Ql 'X :J \ , "' ~ -( , Hr ~ ~ ~ Ll ~ ai ) "- rv ~ ~ .. ~ Ç) 1: c\ ~ l¡ t. 3 -- ~~ \i F * .. :i tJ ~ "" \1 tl , r~ 3 ~ ~~ ~ \. II ~ 5 3D Fluid Flow CFD calculation of atmosphere (Iso-Vorticity contours) CFD calculation of flow in mixing tank 6 (9 ~ ~ ~: ).. - \J ~ X W .. ") (. -. -"" ~ it: t' ~ tL. ~ ~ t 1- V Q 1 \r I': '* 'J Kelvin’s Theorem \tJ~ ,. r. f -( ~ () \l l~ G I~ ~V) ~\~ I~ I 'ì ~ .l~ X ~ L'J r~ w () \: ': .j _ V' 10 v ~ ~~ r '\ f LL I. C\ i -. . I) \J .. ~ ~ ~ J ~ Il , (~ (( ~ ~V)~ \i t~ ~ (~ (: -: VI ~ lY oJ n t: .) ~ (. 'C J ~ '5 II ~~ VI ~ ~ fVI ! ~ L~1 :i ç .. '- \f t ~~ 0 v VI -- \J w 1 ~ "- j ~ ~( ~ "' -~ .. ( t- ~ 'fT ~ ) ,. lJ l. "- ~ F- ~ VI ,.. iJ. )Vl , ~ '0 ~ ~ \l '0 '- l .. J .. y. t ~ ~ \. ~IU 10 J ~ r1- ~ '0 ~ 7 ~ ~ 1 'I ~ ~ ~ t: , il ). 1-- J- ~ u.. '- ~ ~ u t l! ~ l¡ ~ ~.. -' Ç) J lL -t ~ J .. oi ~ ) ': '8 ~~ \. 0 A (General) Vector Theorem for a Moving Surface Flux I I' ~ .. ~ t( r- .. '" + ~ t"~ ~ -. 'i ',, I~ I l ~ ~ I~ ~~N 0 f \i J i- ~ l~ \ ~ ~ t~ lt: L- \I (~ ~\~ \ l- - J a 1¡J IL t' t u It ~ U ~ ~ .. ~ J~ rJ V ~ J ~ J ~ 0 ~ V\ lt ) Q ~ C, f l) \p\1.. t .. t- l .. ~ '4 ~ "' V' cJ (/ 0 f ~ J\ t: ~. Q ~ \ ~ I :: "iJ ~~ ~ X . i~ \. i~ ~ \ ~ ~ t'~ .. l~ \J ~ ~~ -~ ... + t ~ '" _(. Vi ~ !~ Q~ tt c: V' ,- \\ i- '" ., o "l t j ~ ~ u- J~ .. ~ 'tt ( t: tA- "- ~ ~ ~ \. '" l~ ~ ~ \1 ~ V' e vi" () ~ '- ~\ i 8 ~ t? ~ ~ ~ .. J .. Q. ~ ,j J ~ " \) ~ f' ~ v t 't ~ ~ \¡ ~ ~ ~: l- ~ lU a - ~ o (= \. ~ ~~~ ~ x tt (~\ ~ ~ ~ ~~" ~ l~ I~ /;: ~ r- ìt: ~- \. .i " ~ l\t l~ ~~ ~ l" "T \~ ~ l~ . ~ + l\i \1CD n ~ \ L lI c- ,~ ~\- i \¥ \ '- ~~ ~ ~ + ~ ~V1 " I \i .. ¡~ ~ \'~ b + ~1\1 ~ ''l ,,~ "t '\ r~ L c~ ~ G: l0x ~ l~ (: ld -4\' iJ c~ Vi - )~ (. ~ ""C' ~ C' __ "0 ~ "t \( :: '. ~ t- C' l~ (LJ .. ~~ ~ + ~(L¡ -t -r ~ !d '- ll "S II .. ~ r ~ (( , ~l~ cL- , \( ~ -- ~~ L~~ -1 Vector Flux Identity (cont) \L "" " It ~ u: ~ ~ a I~ '- L :J -, .. Ç) ll , g Ç) :J ~ ~u " ~ j "' " '( J \) ~ ~ ~ ~ ~ Vi t(t g ~ ~ t -. :J .. LL ~ \u t " ~ ~ l.. ~ c ~ \J .. .. ì: I +~ IF) \~ h d tb () '" 1I ~ i; ~ I.) /' t \. ~ - ~ -0 ~ V) -- \ ~ C" l\l \ .\ l ~ l~. ~ + t X. l:J \l ~ F 9 ~ k:' - \J ~ 1~ J 'i L -J G ~ ~ c- iw J lJ 11\.. 1- ii l-~ N c:9.. t: -i ~~, ~ ~ r.. Two Line Vorticies \ .. -£ C.\~ 11 ~ t. ": It Q 'i t - .- i - \! ") 0. l- \$ 'L .. ;) Q ~ -. tf ~ .. 2 ~ o~~ ~ '0 .( i. lW ~ r: ~ fò ~.. ~ e: l- II ~0- ~ .. Ci li t: \ ~ vi ~ ,~ \. a \: ~ \ l- ~ (/\ .. ~ V 1 c: C: o l1: \J f~ G: 10 ~ ~ .. ~ 0 .j "- \J ( ~ 'G ~ I:: \J Two Counter-Directed Line Vorticies .. L ! J( \! - ~ ~ ~ ~ ~F o: ~~ :¿ t ~ i -i W LL ~ Q - ~ c: ~ -r ¿ Q ~ .. ~ 0 Q. \J VI lJ ~ i 0 "- ~ 0 't '5 Uj .J ~ ~ r l~ 0 vi lc Q: - .. ; ll i= :J t,- .J ~ ~~ ~ 3~ ~ (J r:\ \i .. ~ ~ 0 1 r * J '- ~ t F ~ ~ t ~ 11 Cà '\. \J (J E 0 ~ ~ '.. ~ Smoke Rings C\ ~ .- (¡ J~ t) ~ ~ ~ ~ ~ J A ) ~ '0 ~ LL .o c: lL 0 ~ I; I~ ~ ') ,:. 0 ~ b ~ 1 ~ "- \I ~ " c" o; Q, .( Q. l "; II Q c: 1 f- Q .. ~ 0 it .. ~ l~ i ") l~ v ~ , VI '" V' ~ ~ v -l )-- v \-- \: ~ '0 J ~ ~ 'l ~G 0 c: ~~ ~ ~ v.~ i~ I ~ ~ t. t~~ ¿ Ûl IL ~ ql q ~( U' tj " ~ 0 ~ .ø ~ \/ 12 Toroidal Vortex Ring http:/ /www.woodrow.org/teachers/esi/1999/princeton/projects/ﬂuid_dynamics/vortex.html 13 V' lJ o Ü -i -. ~ ." c: 2 \l c; c ~ F j. ~ ~ Colliding Vortex Rings ~c6~~, Nf'" tt_~v :J :i :t ~~ ~ t "j\t \$---. (: ~ 1 '~~~ .. \. t J - I. li l :t \Ä r:: VI I) ~~ c. ~ (!~J =-'- ~ 14 http:/ /serve.me.nus.edu.sg/limtt/#Video_Gallery (Prof. Lim, Division of Fluid Mechanics, Melbourne, AU) 15 http:/ /serve.me.nus.edu.sg/limtt/#Video_Gallery (Prof. Lim, Division of Fluid Mechanics, Melbourne, AU) 16 Surface of Rotating Bucket 17 How to solve ﬂuid problems? How To S'òL-vl rLUi,¿ Pflc!IJLErl5? d) (A1 lJ::A-! /1-- òC:E ( AJ 0.. oI '"~-r í1 ò dic ') (Like those in textbook) Ç"Tt=l ~ I fJ t c.t u /Z t2 A D iI;4 Lv ~ tv (L (TE p Ô t- /V A- L- L I~ ~ ò C- A. 6 E 0 J/ £-rlf A I' io f-OJi c. ( "- '1 S \$T1P#( ~~ _ r ç TH i S A 1) T ¡v A. ,CA-L ¿) t1 çrTI ( f If ¿i ~ '- E.. ? ~ o~ TOY /VA t- (c .) A il l' ç (. L ve.L (J -t L( .l ~( 7 A--- ò~ æ~ L lÍ ~ S' t) TH &2 \.' ': 0 l2 (¿ &...A ~C¿)) lj rf c A J) e Å."- '- 1- t~ P Yl () -1 c. c."" ~ rl t7 Âd (. c. lf r1 c).l tf ,c t F l'c ( C U t- 'r . ç-r;: ,#3 ç Ec.tZLI -lK ;10\7 ~C)".vEf'(tE4Â7 LOù.l~/.-A-~ ç (" S Te p. . C' A. -r ~ C 01/ ¡J L( A. t=A- cE 0 d /ê ". r A. .A~ S / N /Tle/'0 i x. (J. ') Ç(¡i it l+ C tAr\ Y ()v .i CJ- A- ç N¡i L '( GO;. S E-I? V iA(l Ò A- pI! ( ~ C ( ,oL C S rk 0 -' IS.- T "" ".1 #/V '7 v l ~ "'Ò '" ;£~ (v ~r E-"IS ft-' r ) p Il ( __ c ( to L If (è ~ò Â, Ç( pf.;AJ It A- i/ ~ c-GQ òi,J L L L f S Y¿L)/l SDLU(fdl--: Ç'7E rP t: ç- ftiL l t¿ l!J /Z / A.u ,7' è) ., ( 18 Surface of Rotating Bucket 1. Draw a picture. 2. Dynamic or Static? 3. Coordinate system? …Static …co-rotating cylindrical 4. Can you apply conservation principles? (no ﬂow in this frame) …Bernoulli’s 5. Use your intuition. 19 Co-Rotating Frame ∂u + u · ∇u ∂t = g − (1/ρ)∇p + ν ∇2 u ∂ uR + uR · ∇uR ∂t = g − (1/ρ)∇p + ν ∇2 uR + R⊥ Ω2 − 2Ω × uR with Centrifugal and Coriolis “apparent” forces. ( Very convenient when uR = 0.) 20 \1 L- ": ~ ~ \! () .. \- u- ~ u ~ Co-Rotating With Bucket ~ v ~ 'ù ~ \!; \L '0 ~ \L \) 'l ~ ~ U. ., ~ .. ~ () C: , 0 \J 0 K t.. ù ~ .. \0 ~ \c ~ ~ l. \1 ~ I ~ '3 I- q. ~ ~ \I \L C: l :s i '0 r: \) ~ led l') + 1\ï -l ~ D \~ l (( () U I :: 'l. lo J\) l:: . "" ~ 'J ~ :) ~ ~ \Ù i ~ .J " .. '" . .. -l ") '\ ( ~ 'U d ~ I. \l 'J ~ '- r' ~ .. ~~ '- I C: \\ ~ \~ l \i l~ Q (W (V tL\~ \~ '- -l .. c: J ~ ~ li ~ 0 LA i f. V ~ '\ \I ~ ~ t I.. l t; ~ 0 V 21 ~ tJ d t ~ . à! - "\ .. ~ d: -l ~ ~ ;).. "- ~ '" C1 ~ 'ì .. J ~ ù i O: "i ,. to r: ~ ., Applying Bernoulli ~ .r -. 1- rJ t ~ .. .. ~ ( C, (" .~ \ () ~ .. ~~ ~ i \ -1 \. 1\.. -- .J ~ " l-: ~- '~r a. ri 11 -C 'i ~ +- 'f ~~ CL ~ Ii ~ (" N - '" :i ~ a.(\ l ~~ ?: '" V) ~ l.t ~ .. U1 ~ -' J lt \Ì u: Î 0 '1 \. .. VI ~ -i 0 l. ~ ~ '\ ~ ': t; ,: .. 0 0 J- 't L :: ( t Ç) _. ~ "r lu v ') '" ~ \1 .. G: ~ n ~ (: ~, ~ _¿ \/ \. ~ '= LL -t V" r ~ I. :: J -~ (, 0 Q ~~0 U - \t ~l -l .. ~ ..~ ~. lI 0 v Ll rf ~i "l -C t: (' ~ C' 1I "v J + \) Q ~ ¡. c: -C Ci (VJ + ~ ~ Q. r. ~ C' J 0. II /" + "' -C '~ 0. + ~~ r-\~ + ~ II \T Q. + ( Q.t II Q.r. I .. O-~ ~ ~ ~ i- +- J Q. ) O-~ ri s: "" tJ ~~ J ('e! t' ~ i ", 'P i- ¿ ~ T ( ~~ 22 . .. -i l. ( r1 t\ G: J ') .: ~ ~ ;p ;) --ctp ~ tI ~, r: ::~ .. .. l~o - '- -trJ Q. "'J I l" N l l' .s ~ j-~ ~ ('J i ,,\~ l Cl Q. ~ ~ l' .L ~ - ~N ~ - .. ,.. .. "" ( ) .. ~ "'- "', /-". 8 ~ 8) t- ~ ~ì: -, '- \. 1: Ik rJ __ ~ ø c: v _ -(1 , lp i - ~,,~ "-- "- "'- "'. ~. J ll J- o ~ i ~ " Problem 5.1 '\ '- '- ~ '- ". "',-", .. '0 ~ / 't l£ ~ N.( i( i: ~ -1 r- N N ~- ./ '", V ~-'~ \~U Q .. ~ ('~~I rJ "' i ~ -l .. ~ \I ~ f: 0 ~ \= \ ti r- N "'" "' L~ -~- ~ '0 tQ .- J ~~ t1 ~ ~v ~ -' .( t tJ u. J "- .. N -c- ~ IN .0 u rl JI~ :: ~ C: - ~ L '=.. /' \f (' .. .1: .. Q \1 ,r ~ (\ .J ':I , J+ ~w+- i il .. r ~ (V ~ L .. -- () ~cl -£ 'C 4- V\ i r- ~ N .. c. \f r& ~ (V 0 ~~ (j c: .. cJ Qì .) \Í I: ~- II /' ~ ~; ~ ~ ~ ~) .: ~ '- .. -l ì '0 2 JL ì. :) o ii ~ t (I ~ ( ~ ,r N )~ lL IJ ) 3l~ ~ r: .. ~ ~ 1i \h o )~ ~ It '\ \r r' ~ .. ~ '.. !i ~l -i ': ~ ~ ~ \) ~ 7) ~ t- t- ø~ 23 Summary • Fluid motion can be described by vorticity dynamics. • Vorticity is conserved in invicid ﬂow. • Vorticity is solenoidal. Vorticity must either close upon itself (like a torus) or close at material boundaries (like a twirling spoon.) 24 ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online