Pre-Calc Homework Solutions 38

Pre-Calc Homework Solutions 38 - 38 Chapter 1 Review 39....

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 38 Chapter 1 Review 39. First piece: Line through (0, 1) and (1, 0) m y 0 1 1 0 1 1 34. (a) The function is defined for all values of x, so the domain is ( , ). x 2, which attains (b) The function is equivalent to y all nonnegative values. The range is [0, ). (c) 5 1 x x 1 or 1 Second piece: Line through (1, 1) and (2, 0) m [ 8, 8] by [ 3, 3] 0 2 1 1 1 1 1 1 x 0 1 x x 1 2 y 3 0, so the domain is y f(x) (x x 1 2 1) 2 or 2 x, x, 35. (a) The logarithm requires x (3, ). (b) The logarithm attains all real values, so the range is ( , ). (c) 40. First piece: Line through (0, 0) and (2, 5) m y [ 3, 10] by [ 4, 4] 5 2 5 x 2 0 0 5 2 Second piece: Line through (2, 5) and (4, 0) m y y f(x) 0 4 5 2 5 (x 2 5 x 2 5x , 2 5 2 5 2 36. (a) The function is defined for all values of x, so the domain is ( , ). (b) The cube root attains all real values, so the range is ( , ). (c) 2) 5 5x 2 10 or 10 0 5x , 2 x x 2 4 10 (Note: x [ 10, 10] by [ 4, 4] 2 2 can be included on either piece.) f (g( 1)) g( f (2)) f ( f(x)) f g 1 2 1 x 1 1/x 37. (a) The function is defined for is [ 4, 4]. 4 x 4, so the domain 41. (a) ( f g)( 1) (b) (g f )(2) (c) ( f f )(x) f 1 1 1 1/2 + 2 2 f (1) 1 2.5 1 1 1 2 5 x , 4 x 4, (b) The function is equivalent to y which attains values from 0 to 2 for x in the domain. The range is [0, 2]. (c) or x, x 0 1 (d) (g g)(x) g(g(x)) 4 g 2 x 2 1 x 2 1/ x 2 2 x 2 [ 6, 6] by [ 3, 3] 1 38. (a) The function is defined for is [ 2, 2]. (c) 2 x 2, so the domain 42. (a) ( f g)( 1) f (g( 1)) f( 3 (b) See the graph in part (c). The range is [ 1, 1]. 1 2 g(2 f (2 g( 3 1) 0 2) x) x 1) 2 g(0) 2 (2 3 3 3 f (0) (b) (g f )(2) (c) ( f f )(x) [ 3, 3] by [ 2, 2] g( f (2)) f ( f (x)) g(g(x)) 0 1 x 1 1 1 x) x (d) (g g)(x) ...
View Full Document

Ask a homework question - tutors are online