{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

ece166_fall2008_hw1_Solutions

ece166_fall2008_hw1_Solutions - Problem#I = C/Ee-fir A =...

Info icon This preview shows pages 1–20. Sign up to view the full content.

View Full Document Right Arrow Icon
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
Image of page 7

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 8
Image of page 9

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
Image of page 11

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 12
Image of page 13

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 14
Image of page 15

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 16
Image of page 17

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 18
Image of page 19

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 20
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Problem #I = C /\/Ee-fir A = via/70 = c MFu/ee-Hc) = (3xr03)/(<ero?-Vfl.6)) =~ 0.0.176M i'L': 20- NH" : 5'0. f—F—O.7L-60° = “F r—o.7[_—6o* 36M 83. .25 (—60.2 (a) 5) 723m! Val-huge a+ fie (and WW) = vo++vo- = va++ r-v.,+ = wow = !- (I+0.4;—5o') = l-35-]0.6r (V) c.) FM) = {Frexp(}‘0)exp(*/‘278f) = Ir! exp E )(o—aflfifl 605611 (9 = 2,812 -—1JT , V 64: 1668 MAXFMHM vame .8= Cur/a) 6 “—"66' =-—'rr/3 , 9—1pfi = —2—Tr {Tr/3)-2.(2n/A)-£ = -27r f: (5/12) )1 when 0 = zfifl-rr , V has fie mPn?mum Vame . -CTFI3)—-2.(2Jr/A).£ = ——1r Q = (I {6) A 2 ® me = Va+fr+lrlj = (-(r+o.0)=1.av (Where i = (51:2)A ) @ VMFn= Vo+fl-II'IJ= [-(I-o.q)=o.3l/ (Where 2.20/6“) when V has Murmam Varue J I has MFnFMUM WINE Wham Villas mfmhnum Value , I has Max?mum Vance . (3) ~90, Imrn=Io+D—Irl] =6MA-Vmin (Where 1:: (IS/[3.) A) 51)!» @ IMGX:L+EI+IT’]=54-MA:M (Where. 2=(I/6)A) 9°" \ F= 0-0 eXP(-??r/.3) 0’) as?) = %- Miami-113%) g: Cur/x) (—r-EXPC/‘a-flz) A= 3cm, 2a=5o m) = 20. 1+ ITleXPCJts‘Je-XPCI-jéi‘) I— Irlexp OMEXP (PM) so. r+ 0-9 e_xp («—j‘rr/3) exp (Z («r/0.03 ) 22 I—— onexp (w? W3) exp C] our/0.03) z) 1! 4+ 99:00:41 , *Co)= 32.19 +j46.04 (.n.) 4+ iL=-—o.4 cm, iICHo.+) = 4!.33 4—)1/543 (a) 4+ %= —o.&cm, Z—c—o.3) = ro.5!-—)-L/.44 (m) (1+ Z—= *L2cm , Elf—ML) = (0.5! +/\a—/.44 (a) 41+ .3: -—l-6 cm, Hams) = W-BS +)II3.13 (IL) . )2 , ‘60“ can 5630 use. 2%.: '20 ELHE‘D-Iw‘ (H 2-; h; 20+52L+Npej p“ . '— [5:932 ,E: o,q,o.?,c,£c.. e) V012): Vo+expcnjpz) + Vo“exp (4???) = V04“ QXPc—Ipz) E l+ Papcfipfl] 1(a) = (Vo+/¥o) - €xP(—}$i‘) [ I*P€’<PC?*¢32)] C Vo+=fw),(6==ur/A ) 2:31:14) F=o.qfi-—6o‘> VSWR =3 {+H'l = Vina): = 5.6’) I‘ll—l men fle—fiarWazmr pom/er (19+) p+=_.1Vo+’-=o.ozw =2omw 539 The. 64;!!qu Pan/eh (P’) P“ = . _. “-14: WNW" = 0.0093 w = 9&8 ww 2‘2: The. Power JFSIE‘Pq-fad F11 fie {cad PCloacI) :: P‘f' -— p" = :o.2' WW Magnitude lrms Magnitude Vrms _. a .‘3‘ 01 0.035 0.03 P a N 01 0.02 1' 53 O .4. 01 0.01 0.005 Problem 1e : Plot the Voitage and Current magnitudes -5 -4 -3 -2 Distance from load in cm -5 -4 -3 -2 Distance from load in cm (1;) fr‘neross‘z c.3d5/cm 0.3% = «cargo/”VLF: lo/gCVr/Va.) (Vi/1A): 10—43 fr: (Vt/Va.) = in ((0 .02 M) = 0.035 M» 0.3 dfi/cm = 0-035Np/cm $o(=o.oss (71:0.7) Inch- Var-bye F‘s a-f—‘H/VD Wan/e J’s/357%: dWay .1 £=9JL= 23r3 =66": ¢+ '2‘: -2 (Input-1L) [VFrH‘I '—‘ fVo+ - . .__ = l.exP('o.O35X€) :r..23 (v) lVE‘n“ l = H'LI axm—MM- IVrn+l = 0.0xexp(_2xo.ossxa)m.23 $[rrnfzo'46 : 0-57 (V) VapvRCa-f- fipuw‘) = !+ In“ .: (+0.46 = 2.7 :- mm. (#046 VSWR (H react) =~. r+ IFL' .-.- {+0.7 .-= 5.67 1“ (Val ’"0-7 +68 fihWar-d Pawen -‘ Pr‘n"' = [MVP/£0 = 30.3 now He back'Wam’ power: : Pr‘n' 1“ (V:‘n'"/"/i’b = 6.5 MW (one-4L = Pa+—P?n‘ =3 Bang—6,5 == .23. 67 WW PA+= {Ve+f“/5.‘a = 20 MW Pat"; {Vv‘I’L/z‘e 1': IFgl‘.IVa+!‘/Z~a=?..§mw PL = PM“ — PL“ = (0.2 MN PO’Fne (m) -= Pnef- -pg -_~ 23.9-40.2 =/a.6‘ (mm) [Dhafi/em #45 => Md'fC/fed’ T-}uac1‘r‘bn 3: = 45.12. 14-” 'é-filfne {eff-H: are '2er Vat—— %,-e—?r:5 Em Q 4') “29‘"®= R+ Emmy/(Ham = &+ CR+2o)/-L = (BLLM-f— 0/3.”: “BF ("timed Cflfld?*;0fl) 293$ = '20 ODOR—r— (f/L)R —.—_ a, 3:: 0/3)}, = 2.551, _. mfleCfi‘on Coef-chr‘en-f- 4+ p0r+® [5:0 6ecau5‘e. for+® (3‘ Ina-fried ) ( ‘Tfle egaFVa/en+ cFmP+ *fikam poz~+® ) VX 7-": [RL /CR+RL)J ‘ VIA == (943)» = 0.60 (v) VL= [219/ CR+?o)J ~ Vx =- (WNW-#3) = (VJ—NV) VL=V3 =0.5'V ( because 0+ no ne-Hccfi‘m, jcarv'ard were 2‘: fire node voHnJe ) PM I Pan/en PnCPJen-f- a+ pon+® == Ivo+1*/zo =QI/x75) -- 13.3 mm) Pa. : Pan/eh defrvmd 4+ par+® = [VLF lilo :(o.5=~/qs ) =—62—6-9mw P3 = Power- deiE‘I/ened 4+ pan-6(3) = a, 33 mN 3. 33 Pawn“) = P?» -—P-=L ”P3 = 6.67 «mw -——> 50 x Power Rs comm/med ./ 530:7511 '2‘?n® £19 ‘26: [ RN CR+%?] +R as»: R: (7/3 ) it: _ (3/5) 2.: :4“; T». = _(.—_fi?"?”) = 45425“ = *(_/_) (a MA.) 4—:+45 4 V: = Var++ Va“ 2 1+(—r/4) .-_— (3/4.) (v) V): ': ER” CR+¥0)J ‘ V! = a}? X.— : :34— (V) k-f- CR/ICR+?0)] 55’ ,4’: @/ Ck+%)]'Vx= (an->000 =(r/4)rv) =3, ML: 0‘ p,+ = [vaflk/ z» = {3.3 MW IE—Ffecfed power 4+ pom!- @ Pr= lF'mV-PH = 0&3 2w pan/en tie/mm; in MN ® P3=1Val’/‘Zo= 0.9.? mW Power derrv’ereaf 40 PoM— ® ,0; = o (no Mohave , 00 port/er) 3o +— Var" ' ¥o=45a 22o 2WD 4?: 0/3)?» _ 2%?) = R—I— f (Mm/x fie-#22:)J = aQ-F f (Ki—BR) I («+6103 = «98.6312 7—71} .2: fine kHz—o : 33.63““75‘ = o‘oya $393; -+ a, £9. 63 +7.5“ Voifi‘: I}?! ‘ Val+ = 0-033 (v) V; = VEH+ + Va," = (.033 (v) Vx = CR-fi‘ow/ 02+ 22:.) . y,- R+[CR+?°)//(R+2‘Eb)] C63. 63 / «9163):: (r. 0093 7 II = 0.767 (1/) Vi = [770/(1?+?o)] V”'¢05¢PCV) v3 = [22” CR+2izo)J Vx = o 600/) ”afieff'ed Power ct-F MINI-CD Pr": ”To I'L~PI+ ‘2 0‘07 ’"W power ate/Were! +0 Pow—Q pL= (vql/ 29 = 4.49 mw PoWer de/FI/‘emd +0 pon+® P3: NSF/2» = 6 mv ) pm: xa-a mw PROBLEM #3 G) For Mew-r toads , f) l A 6 Va" I -———__—5 I it, I-_—) Vaaj' Vol I <_____ Rp Ié——- V6.15": O l r 5 ‘ (~.- Here I“: no ref/awed wave 790"” ”5+3 ) I I 7' arm—2., = (Mm—95° = i A £m+zo (fipx/&)+¥u 2szo+%‘ TA = (mp/v03) = Cch+/Vor+) = Mn 2 fznf.zo/(2sza+¥o‘)] VRP’ 72‘Va!+ ‘ szzv fszpz.+zw)] t/on‘ Zrn=CRP//%) Pkp= Warp/Rap P+ = wa'lLl=k / go PK? : 'VRPIL' $9" = M (A) W ’Vol'f-{l‘ 1% (wag. + az)‘ 2.) To max?m7¥e fine power +o Rf, 12:29. cu den‘ra-f—r‘on. e3 (,4 ) —-> o @{ng/P+) = o % [email protected]{—F(x) ? l: frr12Z(>C)—7C(¥)Zrm) 9199 Jet) R700 'r‘" 55:3(zepzo+zo=~)‘“-—4Rpazos-2cm&+%*>-2a =0 2R???" + E"3")4“ P5 p+ .. “5‘23 3—) To Max‘im‘i‘ze power +0 QCPRS/P+) :0 (BR: «Hazar H I). P (fiefiecfed ) IEI‘IIVOI‘HJL/ & o.:sp+ ¢—-.. nun—h. h.— C no ref/Md war/e. ) _ 3-714: 77! $11-on 7:3 :( VA / Vor+)= l-r-FA _[.zoes+zo)/ (szzofl Va: 4g, /CR.s-+zo)] - v4 / =[Rs / C§J+ZD)J ((+54) van“ R3 _____._= Vor' fits-+221: I/or* :C;RJ/(Rs+2?o)] Vw+ PI“: 'VRS! /Rs P+= [Vor'FI‘L/i‘" - (6’) A35) flKe a deni‘mfi‘m 423 (49—90 42., (Rs+2zu)*—~4exza (R.r+3a‘z?c:)><a = o (Rs+2zov* Mtg-#229) *Mgflz =0 Rnnzz, = 24:2; IR3=2£0| Pa+ 193:2'30 (‘5 695(5) PK: ._ 32f __/_ “£2 I P+ ”727:=% , m==~('4ao/') Pfre‘Hec-fed) = 'T'All"v°'—.+P = 2910+ 25 V°l+=VAX_§__= 22., - +:._/ + ma» m V" 2- V" *1 PC’f‘I‘dnSMF'f‘f’ed) = ,Vofi‘fL/fi .-.-__— [Vo;+{‘” X “—(- 5, 4— l3 Pros/em #4— ””9 V0!+_.__) ' A ‘8 C t=o — ' +4 I 3‘ a) . _ V” E I 0.5.? age I _. 1 1 30.!1 " g? : I R1. = 300.12 AV :2 w E : I I 1 .9 =30“ I n0+ Ina-failed +0 fie (Me (‘3 Rt. 95 53o) fl J} Wed-En do?” occur 41+ fie (0;:th LT 3:32... _ M = 0.5 V34“ ALL-+53 Bea—Hoe @Mxfim coeffr‘cr‘en-f- 41" file [and impedance -i‘o = 30—100 _-'-_——0.54_ RJ-rilu 304400 6'-Ne+!.ec+{r‘¢m Coefl?c?en+ 0+ finevenemfofl Emoea’aflae v3+= 13v;— = [3‘11" v.+ ’9 +Z° V3." =rLVS+=EflrL3 Vl'f‘ -"-' 3!:0 ‘2 =I‘S4[V) V4+ = Eva": UJQJVH 0 {0° V4“ = I1 v4+ = 53114 VH‘ V!“ = I}.- VH- = 0-00 (v) VL Vy++ VF-r- V¢++VJ+V3++V3‘+ = r+Cf+T1+FfI+ r31: + r541 +--- = Cr+n_)(r+r3n+ (13(1) + (QT‘:.)3+ => (’*TE = Vr+-U+712 = {.54x §I+osz 3J6 (v) (7-4371) ((—03—7) (S Vr+= I-Stfl/ ’Up‘: 6 /\/EJ,: = (ammo/W V”: 0’7“” - Lsxmc? (M/S) VL+ «~— ‘0‘4—9—V - V4: = “OJ-F V T = 3/ up = (5x10—1)/(/-3XIO") Vs+ = o.(/v = 3.3mm“ V3—= 0-051” '" 0.33xro‘9 V4+ ="°_~°3V é:- o.:3 nJ‘ VA wuvr—WH L3'9 ‘ “ 4. - .L V!+V|+V.2 *V:+Vs 4 —_"j v.++v.‘+ v;.*+v.1‘“+ V: +- V' +Va‘-I~V4+ i=0 1' 2T 3T 41' ST 6T ’PT 31— VB 33?! “9*? VIJ' _. 051‘ 1.51" 1-5T 33'1“ 4 51’ 15.51' 5.5T r) 51' I I 1 I 1 I I l l l I I I 1% Miégta 91‘ m- 15‘167“: #9115 a; A’Ppwx. HM. MM 22 Kim :2 SW bes. 12 L WW: 3' K 3 .._ fir b) #0 + 4 ii r—-§ V2 0 :2 {06.0. )é—V/F t€VLh Q M-er : Rthocfir H _ 94/ ._ T V" ‘_2;”_:_‘_! W4H£ed *‘0 456 We (1' fig: 2a,) 9 S0 Deflefim 00?” 00+ orccu— 61+ fie {oa..c{ VFW. __ 195—20 W" ’I : Tame = 0 M G=.—'QJ_“‘21: o 15 F AQj-f-iLo I V + - 2‘” f _ VA 9% IV I——“‘—__—“‘ :2: {V {r 2.0 ”I Pmb/em #5 ._ ____/i//'_LL__ = iii}. =94? E) VSWR "‘ {milk} (—0.4 p+= “6"“,1/5'69 = f/jb==2o now P“ = IFL/‘P'F =Co~4 )‘x 0/50) = 33“” PL: P+ ( r— [rm-L: (pt-”W; 20 —- 9.8 = (0.2. MW =3 Same as PHL/em # Ice) +) a! :0.035 (a: calcura-f-EJ rnoéremm 6+) ) R = 6 cm (= 2A) + =-;« wave-r "’93:; '—9VL+ V'g-F = vfiexp (—zxfl) ‘ '6‘ w. VI." = [L VL+ == 72 - Vo+ exp c—orJ?) : Vo' = VL"- eXP r—dfi) = I"; v¢+exprnzd£) ”Pitt 104:! . _ I pFn :1 Vo- -.-.- fi.aKP(—_2,b(£) :— 0.4.6 it \ Vp-fi VS‘WR C¢+ F‘npu'f") == r-r- {PTn’ - 2.7 {"‘ ,thI ' VWR (4+ (and) =~ f+ IF...) I: S_6‘7 3“ ’17:.) sze F; alto same ( —H; e firwerd )0 awer hefrec-H‘on CoefiCFCr‘Cnf doe; na+ Marge ) PM = {V?a+/‘/$D =2 20 mm/ ‘HIC bacmamfPOWEPi Pu": [PTnI;JW+IL/iz” 241232 ’"W Pne+ =Prn+ _ a": r340 (mw) Pg+ 1‘ {y,_+{-1/go = (3.26nw) , PL: PL+ rPk"'-J.3MW PL” -"-‘ {VL'I'L/fio = 6- 4 (m W) purine {0.93) ..—_- Pne-r— .—/>1L .: I500 “5.8 = 8. 9/) (MN) Magnitude Vrms .. I; f: m 0.035 0.03 F3 0 NI (:1 0.02 . Magnitude ln'ns I'D '3 0'! 0.01 0.005 -7 Problem 5f: Plot the Voltage and Current magnitudes with a line ioss Distance from load in cm Distance from load in cm mmwmmmmmm m 4 4 1 [an] 4 PM «rmmmmmnm V1 ms — am was i am g n 015 0-71 ones I [an] rmrvmwhmmmrnm 1 a u 1 . gm. Eu ' MN ”m. mamwmmm 11ml] ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern