hw-1-sec-5.3-solns

# hw-1-sec-5.3-solns - 388 CHAPTER 5 INTEGRALS \$64 573 m 1 7...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 388 CHAPTER 5 INTEGRALS \$64 573 m , 1 . . 7. f(t) = t3 + 1 and g(x) = /1 ta + 1 dt, so by FTCl, g = f(:c) = \$3 + 1. Note that the lower 11m1t, 1, could be any real number greater than — 1 and not affect this answer. 8. f(t) = (2 + t4)5 and 9(13) : flz(2 + t4)5 dt, so g’(ac) : f(;v) : (2 + \$4)5. 9. f(t) : t2 sint and g(y) = f: t2 sintdt, so by FTCl, g'(y) 2 ﬂy) : y2 sin y. 10. f(:c) : x/m2 +4andg(7‘) : for V352 +4dm, so by FTCl,g’(r) : f(r) = \/T2 +4. 11. F(x) z/ \/1 +sect dt = —/ V1 +sect dt => F'(:c) = —1 v1 +sect dt = —\/1 +secm 1 I :1: 12. G(a:):/ cosx/idt=—/ cosx/Edt :> G’(x)=—i cosx/Edtz—cos m a: 1 1 du 1 dh dh du 1 . : —, — : —-—l —_ = __ 3 Letu 3: Then dm x2 Also, dx du dm, so I d VI 4 d u 4 du 4 du —sin4(1/x) h dxl SIn td du 2 sm tdt dx sm udm x2 du dh dh du 1 . = 2, — : I -— : _._._ 4 Letu x Then dag 23 Also, dm du dip, so \$2 U h’(x):%/ x/lfl—r3drzﬁ/ \/1+'r3dr-:ll—:=\/1+u3(2:r):2x\/1+(m2)3=2xx/1+:176. 0 0 15. Letu = tanx. Then 5% 2 see2 as. Also, 23—: = ((3—ng, so tans: u y’=i Vt—l—x/Edtzi/ \/t+\/Edt-—d—u=Vu+ﬁﬂ=Vtanm+\/tanxsec2;r. d3: 0 du O dot dsv 16. Letu = cosx. Then 2—: : —sinm. Also, % = 2—13: Z—Z, so I d CO” 2 10 d u 2 10 du 2 10 du 2 10 . 3; dx 1 (14—11) (11) du 1(1-1—11) d1} dm (1+u) div ( +cos ac) smx _ dw _ dy ~ dy dw 17. Letw — 1 — 31’. Then dd: _ 3. Also, d3: — dw d\$,so 1 3 1 3 w 3 3 3 1 _ y/Zi u duzi u du.d_w:_i u du.d_w:_ w RPM dz: l4751+le dw w 1+u2 dm dw 1 1+u2 d3: 1+w2 1+(1—3:1:)2 1 du 2 dy dy du 1 . : —. —— : ——. -~ I —— 8 Letu \$2 Then dLr 333 Also, d3: du day, so d 0 d 0 du d “ du 2 25in3(1/\$2) / - 3 . 3 . 3 . 3 =— tdtz— t -—-=— dt--—=— —— 2—. y dag 1M2 s1n du/u sm dt dm du 0 sm t div sm u( 363) \$3 SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS D 389 ® ff(5—2t+3t2)dt= [5t~t2+t3]:=(2O—16+64)—(5—1+1)268—5263 @fol(1+%u4—§u9>du=[nan—#1015:(Haas—0% 1 23. folm4/5dm = [3.69/5] : g — 0 :3 O 8 24. ff wag; = f18m1/3 d1: = [gx4/3ll = as“ — 14/3) = §<24 — 1) = %(16 — 1) = %(15) = \$75 2 3 2 -4 r3 2 3 1 2 1 7 t — 2— — :— —-—- :— @/1 t4 /1‘ 3i_3i1 _3 it3i1 1<8 1) 8 Q ffcosado = [sine]? =sin27T—sin7r =0—0=0 2 27. f02 \$(2 +x5)d:c : f02(23: +336) dm = [x2 + %x7]0 = (4 + 1—?) — (0+0) = L? fol<3+mﬁ>dm= fel<3+ww>dw = [326+ = 1m 3 —01 = 9\$—1 _ 9 CE 1 __ 9 1/2 —1/2 _ 2 3/2 1/29 29./1 ﬂ (ix—ﬂ (E—\$>dx—/l (x —a: )dsc—[Eat -—2:1: L =(%-27-2-3)-(%—2)=12—(—%)=95? 30- f02(y~ 1)(2'y+ 1)dy= f02(2y2 —y — 1)dy = [%y3 - éy2 ~y]§ = (% — ~ 2) —0=§ @fJ/4sec2tdt = [tant]g/4 = tang —tan0 = 1 —0 = 1 32. few/4sec6 tan6d0 = [sec0]3/4 = secg —sec0 : ﬂ— 1 33. ff(1+2y)2dy=ff(1+4y+4y2)dy= [y+2y2+§y3]f=(2+8+%)—(1+2+§)=%—%=3§3 2s4+1 2 2 2 13 12 8 1 1 7 1 17 34. d = — d = — —— = ~-- — —— =— —=— /1 s2 S [1(3 +8 ) 5 [35 sil (3 2) <3 1) 3+2 6 sinzr if 0§\$ <7r/2 35. Iff(x) 2 then cossc if 7r/2gmg7r . 7r . . +[s1nxlw/2 = —COS g +cosO+s1n7r — Sln 1r/2 O 1 f0" f(ac)dx 2 far/2 sinmdm+f:/2 cosasdx = [— cosac] 2 :—0+1+0—1=0 , Note that f is integrable by Theorem 3 in Section 5.2. 36 Ifﬂ) 2 if ~2SZL‘SO h . x: ten 4ww2 if0<m§2 2 [32 f(:r) dz: = ff? 2dx + [02(4 — 1:2)dx = [29432 + [4m — §x3]0 = [0 — (—4)] + (I; — 0) 2 % Note that f is integrable by Theorem 3 in Section 5.2. 37. f = 93—4 is not continuous on the interval [—2, 1], so 'FTCZ cannot be applied. In fact, f has an inﬁnite discontinuity at l _ . a: = 0, so f_2 x 4 dz does not eXISt. ...
View Full Document

## This note was uploaded on 10/10/2011 for the course M 408S taught by Professor Shirley during the Spring '11 term at UT Arlington.

### Page1 / 2

hw-1-sec-5.3-solns - 388 CHAPTER 5 INTEGRALS \$64 573 m 1 7...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online