{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Section 4.1 - Contents I Probability 5 1 Sets and...

Info icon This preview shows pages 1–15. Sign up to view the full content.

View Full Document Right Arrow Icon
Contents I Probability 5 1 Sets and Probability 7 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . 8 1.1.2 Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . 14 1.1.3 Proportions . . . . . . . . . . . . . . . . . . . . . . . . 21 1.2 Counting Techniques . . . . . . . . . . . . . . . . . . . . . . . 34 1.3 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 1.3.1 Random Experiments, Sample Spaces and Events . . . 59 1.3.2 Probability . . . . . . . . . . . . . . . . . . . . . . . . 65 1.4 Conditional Proportions and Probabilities . . . . . . . . . . . 84 1.4.1 Conditional Proportions . . . . . . . . . . . . . . . . . 84 1.4.2 Conditional Probabilities . . . . . . . . . . . . . . . . 87 1.4.3 Multiplicative Rule . . . . . . . . . . . . . . . . . . . . 91 1.4.4 Independence . . . . . . . . . . . . . . . . . . . . . . . 92 1.5 Compound Experiments . . . . . . . . . . . . . . . . . . . . . 107 1.5.1 Finding Probabilities and Conditional Probabilities in Compound Experiments . . . . . . . . . . . . . . . . . 108 1.5.2 Notation for Events in Compound Experiments . . . . 117 1.5.3 Using the Multiplicative Rule to Find Probabilities in Compound Experiments . . . . . . . . . . . . . . . . . 119 1.5.4 More Examples . . . . . . . . . . . . . . . . . . . . . . 124 1.6 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 145 2 Variables 163 2.1 Variables and their Distributions . . . . . . . . . . . . . . . . 164 2.1.1 Basic Definitions of Variables and Random Variables . 164 2.1.2 Classifying Variables . . . . . . . . . . . . . . . . . . . 168 2.1.3 Distributions of Variables and Random Variables . . . 169 1
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2 CONTENTS 2.1.4 Distributions of Categorical Variables . . . . . . . . . 170 2.1.5 Distributions of Numerical Discrete Variables . . . . . 175 2.1.6 Distributions of Numerical Continuous Variables . . . 180 2.1.7 Experimental Distributions . . . . . . . . . . . . . . . 191 2.2 Percentiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 2.3 Mean and Standard Deviation . . . . . . . . . . . . . . . . . . 215 2.3.1 The Mean . . . . . . . . . . . . . . . . . . . . . . . . . 215 2.3.2 Variance and Standard Deviation . . . . . . . . . . . . 225 2.4 Joint Distributions . . . . . . . . . . . . . . . . . . . . . . . . 241 2.5 Conditional Distributions and Independence . . . . . . . . . . 259 2.5.1 Conditional Distributions . . . . . . . . . . . . . . . . 259 2.5.2 Independence . . . . . . . . . . . . . . . . . . . . . . . 264 2.5.3 Interpreting Scatterplots . . . . . . . . . . . . . . . . . 267 2.6 Covariance and Correlation . . . . . . . . . . . . . . . . . . . 277 2.6.1 Covariance . . . . . . . . . . . . . . . . . . . . . . . . 277 2.6.2 Correlation . . . . . . . . . . . . . . . . . . . . . . . . 281 2.6.3 Observations and Properties of Correlation . . . . . . 287 2.7 Combining Variables . . . . . . . . . . . . . . . . . . . . . . . 299 2.7.1 Y = f ( X ) . . . . . . . . . . . . . . . . . . . . . . . . . 299 2.7.2 W = f ( X, Y ) . . . . . . . . . . . . . . . . . . . . . . . 305 2.7.3 Sums of Many Variables . . . . . . . . . . . . . . . . . 313 2.7.4 Portfolio Analysis . . . . . . . . . . . . . . . . . . . . 314 3 Important Families of Distributions 325 3.1 Using Distributions to Find Probabilities . . . . . . . . . . . 326 3.2 Binomial and Hypergeometric Distributions . . . . . . . . . . 329 3.2.1 The Binomial Distribution . . . . . . . . . . . . . . . . 329 3.2.2 The Hypergeometric Distribution . . . . . . . . . . . . 337 3.2.3 Proportions of Successes . . . . . . . . . . . . . . . . . 344 3.2.4 The Binomial Distribution as an Approximation to the Hypergeometric Distribution . . . . . . . . . . . . 346 3.3 The Poisson and Exponential Distributions . . . . . . . . . . 356 3.3.1 Poisson Processes . . . . . . . . . . . . . . . . . . . . . 356 3.3.2 Poisson Distributions . . . . . . . . . . . . . . . . . . . 357 3.3.3 Exponential Distributions . . . . . . . . . . . . . . . . 363 3.4 The Uniform and Normal Distributions . . . . . . . . . . . . 373 3.4.1 Uniform Distributions . . . . . . . . . . . . . . . . . . 373 3.4.2 Normal Distributions . . . . . . . . . . . . . . . . . . . 376 3.5 Sampling Distributions . . . . . . . . . . . . . . . . . . . . . . 400 3.5.1 Mean and Standard Deviation of Σ X and ¯ X . . . . . 402
Image of page 2
CONTENTS 3 3.5.2 Complete Distribution of Σ X and ¯ X . . . . . . . . . . 404 3.5.3 The Normal Approximation to the Binomial Distribu- tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 3.5.4 Normal Approximation to the Poisson Distribution . . 418 II Statistics 425 4 Estimation 427 4.1 Point Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 428 4.1.1 Parameters, Statistics and Point Estimators . . . . . . 428 4.1.2 Assessing the Quality of a Point Estimator . . . . . . 430 4.1.3 Point Estimators for Common Parameters . . . . . . . 434 4.2 Introduction to Interval Estimation . . . . . . . . . . . . . . . 415 4.2.1 Guiding Example and Definition . . . . . . . . . . . . 415 4.2.2 Confidence Interval for μ when σ is Known . . . . . . 420 4.2.3 Determining the Sample Size . . . . . . . . . . . . . . 423 4.2.4 A Closer Look at Confidence Intervals . . . . . . . . . 424 4.3 More Confidence Intervals . . . . . . . . . . . . . . . . . . . . 428 4.3.1 Estimating μ when σ is not known . . . . . . . . . . . . 428 4.3.2 Estimating a population proportion, p . . . . . . . . . . 436 5 Hypothesis Testing 445
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
4 CONTENTS
Image of page 4
Part I Probability 5
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
Chapter 1 Sets and Probability 7
Image of page 7

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
162 CHAPTER 1. SETS AND PROBABILITY
Image of page 8
Chapter 2 Variables 163
Image of page 9

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
324 CHAPTER 2. VARIABLES
Image of page 10
Chapter 3 Important Families of Distributions 325
Image of page 11

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Part II Statistics 425
Image of page 12
Image of page 13

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Chapter 4 Estimation 427
Image of page 14
Image of page 15
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern