{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# 409Hw02 - STAT 409 Fall 2009 Homework#2(due Friday...

This preview shows pages 1–2. Sign up to view the full content.

STAT 409 Homework #2 Fall 2009 (due Friday, September 11, by 4:00 p.m.) 1. Let X 1 , X 2 , … , X n be a random sample of size n from the distribution with probability density function ( 29 ( 29 ( 29 θ 2 X X ln 1 θ θ ; x x x f x f - = = , x > 1, θ > 1. a) We already know ( Homework 1 ) that the maximum likelihood estimator of θ is = + = n i i x n 1 ln 2 1 θ ˆ . Is θ ˆ a consistent estimator for θ ? Justify your answer . b) We already know ( Homework 1 ) that if θ > 2 then the method of moments estimator of θ is 1 1 2 θ ~ - - = x x . Is θ ~ a consistent estimator for θ ? Justify your answer . ( Assume θ > 3 ) . 2. Let X 1 , X 2 , … , X n be a random sample from the distribution with probability density function ( 29 θ 2 θ x e x x f - = x > 0 θ > 0. a) We already know ( Homework 1 ) that the maximum likelihood estimator of θ is θ ˆ = = n i i n 1 X . Is θ ˆ a consistent estimator for θ ? Justify your answer . b) We already know ( Homework 1 ) that the method of moments estimator of θ is = = = n i i n 1 X 2 X 2 θ ~ . Is θ ~ a consistent estimator for θ ?

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}