tut_5_Chap_5_sol

tut_5_Chap_5_sol - ,QatarUniversity ,GENG200 Tutorial 5 2B...

This preview shows pages 1–2. Sign up to view the full content.

College of Engineering, Qatar University Page 1of 4 Probability and Statistics, GENG200 2B Tutorial - 5 Question Sections 5-1 Page 163: 1) 5.1 2) 5-2 3) 5-8 SOLUTION: 5-1. First, f(x,y) 0. Let R denote the range of (X,Y). Then, = + + + + = R y x f 1 ) , ( 8 1 4 1 4 1 8 1 4 1 a) P(X < 2.5, Y < 3) = f(1.5,2)+f(1,1) = 1/8+1/4=3/8 b) P(X < 2.5) = f (1.5, 2) + f (1.5, 3) +f(1,1)= 1/8 + 1/4+1/4 = 5/8 c) P(Y < 3) = f (1.5, 2)+f(1,1) = 1/8+1/4=3/8 d) P(X > 1.8, Y > 4.7) = f ( 3, 5) = 1/8 e) E(X) = 1(1/4)+ 1.5(3/8) + 2.5(1/4) + 3(1/8) = 1.8125 E(Y) = 1(1/4)+2(1/8) + 3(1/4) + 4(1/4) + 5(1/8) = 2.875 V(X)=E(X 2 )-[E(X)] 2 =[1 2 (1/4)+1.5 2 (3/8)+2.5 2 (1/4)+3 2 (1/8)]-1.8125 2 =0.4961 V(Y)= E(Y 2 )-[E(Y)] 2 =[1 2 (1/4)+2 2 (1/8)+3 2 (1/4)+4 2 (1/4)+5 2 (1/8)]-2.875 2 =1.8594 f) marginal distribution of X x f(x) 1 ¼ 1.5 3/8 2.5 ¼ 3 1/8 g) ) 5 . 1 ( ) , 5 . 1 ( ) ( 5 . 1 X XY Y f y f y f = and ) 5 . 1 ( X f = 3/8. Then, y ) ( 5 . 1 y f Y 2 (1/8)/(3/8)=1/3 3 (1/4)/(3/8)=2/3 h) ) 2 ( ) 2 , ( ) ( 2 Y XY X f x f x f = and ) 2 ( Y f = 1/8. Then, x ) ( 2 y f X 1.5 (1/8)/(1/8)=1 i) E ( Y | X =1.5) = 2(1/3)+3(2/3) =2 1/3 j) Since f Y|1.5 (y) f Y (y), X and Y are not independent 5-2 Let R denote the range of (X,Y). Because 1 ) 6 5 4 5 4 3 4 3 2 ( ) , ( = + + + + + + + + = c y x f R , 36c = 1, and c = 1/36 a) 4 / 1 ) 4 3 2 ( ) 3 , 1 ( ) 2 , 1 ( ) 1 , 1 ( ) 4 , 1 ( 36 1 = + + = + + = < = XY XY XY f f f Y X P b) P(X = 1) is the same as part a. = 1/4

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 4

tut_5_Chap_5_sol - ,QatarUniversity ,GENG200 Tutorial 5 2B...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online