EE203-SUNYBuffalo-18-Chapter12-04

EE203-SUNYBuffalo-18-Chapter12-04 - SMALL for Big Things...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: SMALL for Big Things University at Buffalo SMALL for Big Things University at Buffalo nanobioSensors & MicroActuators Learning Lab The State University of New York nanobioSensors & MicroActuators Learning Lab The State University of New York Recall Lecture 17: The Roots of D(s) EE 203 Circuit Analysis 2 Lecture 18 Chapter 12.7 Inverse Transforms (continued) The The roots of D(s) are either are 1. Real and distinct 2. Complex and distinct Kwang W. Oh, Ph.D., Assistant Professor SMALL (nanobioSensors and MicroActuators Learning Lab) Department of Electrical Engineering University at Buffalo, The State University of New York 215E Bonner Hall, SUNY-Buffalo, Buffalo, NY 14260-1920 Tel: (716) 645-3115 Ext. 1149, Fax: (716) 645-3656 E-mail: kwangoh@buffalo.edu, http://www.SMALL.Buffalo.edu 3. Real and repeated 4. Complex and repeated EE 203 Circuit Analysis 2 | Spring 2008 | Prof. Kwang W. Oh | EE@SUNY-Buffalo Lecture 18 | Chapter 12 | 4/5 | 1/8 EE 203 Circuit Analysis 2 | Spring 2008 | Prof. Kwang W. Oh | EE@SUNY-Buffalo Lecture 18 | Chapter 12 | 4/5 | 2/8 SMALL for Big Things University at Buffalo SMALL for Big Things University at Buffalo nanobioSensors & MicroActuators Learning Lab The State University of New York nanobioSensors & MicroActuators Learning Lab The State University of New York 3. Partial Fraction Expansion: Repeated Real Roots of D(s) (1) K1: F(s) x s xs K2: F(s) x (s + 5)3 3. Partial Fraction Expansion: Repeated Real Roots of D(s) (2) x (s + 5)3 K3: d[F(s) x (s + 5)3]/ds K4: d2[F(s) x (s + 5)3]/ds2 5) K3: d[F(s) x (s + 5)3]/ds EE 203 Circuit Analysis 2 | Spring 2008 | Prof. Kwang W. Oh | EE@SUNY-Buffalo x d[(s + 5)3]/ds x d2[(s + 5)3]/ds2 5) x d[(s + 5)3]/ds Lecture 18 | Chapter 12 | 4/5 | 3/8 EE 203 Circuit Analysis 2 | Spring 2008 | Prof. Kwang W. Oh | EE@SUNY-Buffalo Lecture 18 | Chapter 12 | 4/5 | 4/8 SMALL for Big Things University at Buffalo SMALL for Big Things University at Buffalo nanobioSensors & MicroActuators Learning Lab The State University of New York nanobioSensors & MicroActuators Learning Lab The State University of New York 3. Partial Fraction Expansion: Repeated Real Roots of D(s) (3) 4. Partial Fraction Expansion: Repeated Complex Roots of D(s) (1) K1: F(s) x (s + 3 – j4)2 K2: d[F(s) x (s + 3 – j4)2]/ds x (s + 3 – j4)2 x d[(s + 3 – j4)2]/ds K1*: K2*: EE 203 Circuit Analysis 2 | Spring 2008 | Prof. Kwang W. Oh | EE@SUNY-Buffalo Lecture 18 | Chapter 12 | 4/5 | 5/8 EE 203 Circuit Analysis 2 | Spring 2008 | Prof. Kwang W. Oh | EE@SUNY-Buffalo Lecture 18 | Chapter 12 | 4/5 | 6/8 SMALL for Big Things University at Buffalo SMALL for Big Things University at Buffalo nanobioSensors & MicroActuators Learning Lab The State University of New York nanobioSensors & MicroActuators Learning Lab The State University of New York 4. Partial Fraction Expansion: Repeated Complex Roots of D(s) (2) EE 203 Circuit Analysis 2 | Spring 2008 | Prof. Kwang W. Oh | EE@SUNY-Buffalo Lecture 18 | Chapter 12 | 4/5 | 7/8 EE 203 Circuit Analysis 2 | Spring 2008 | Prof. Kwang W. Oh | EE@SUNY-Buffalo Lecture 18 | Chapter 12 | 4/5 | 8/8 ...
View Full Document

  • Spring '08
  • Staff
  • Partial fractions in complex analysis, Buffalo Metro Rail, University at Buffalo, The State University of New York
Ask a homework question - tutors are online