This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: MATHl850/2050 809 Name: Page 1 of 7 (1) (5 marks) Find an equation of the plane containing the point P(1, 1, 1) and parallel to the two lines given by the parametric equations
BlEGCTlOL) “Exam [1: 3321—75, y=2+2t, z=3 j=(—1,2,0)
l2: 3:23—2t, y=4+t, z=t ZEfC—AIM) c. 5 \<\=(1)\33) —\ L o "7— ( l & 0st qxl‘o 8+6: +oL=O W1“ C4 5’6) =1) = C2. ‘99 3° Zx+I%\’?>7_\0L=O s; Mal. x=\,\Q=/l,z:zt To GET," 1+ \+2,+at=o =9 A: —L. SO iln‘k‘ak'B—L—Q'JO (2) (5 marks) Say T : R3 —> R3 is the linear operator deﬁned by:
a reﬂection about the asyplane followed by
a counterclockwise rotation by an angle of 7T/ 2 about the positive
QUaXlS followed by an othogonal projection onto the yzplane.
Use [T] = [T(el)  T(€2)  T(63)] to get the standard matrix of T. Z 2 z MATH1850/2050 809 Name: Page 2 of 7 (3) (7 marks)
(a) (4 marks) Let T : R3 —> R3 be the linear operator deﬁned below. De—
termine the values of k for which T w to be oneto—one. 101 — 2:171  $2  2:173
102 = —2£E1  [€362  2:173
103 — 2:171  + 2)$2  + 1)£U3 T mks To rag A—A @ MET—3:0, Z l 2, ’2. \ 1
—1 l; 1 = Q \m u QZ+L= 2 tan \m 0 b1 \c'\ 1341‘ 'L l 2.
Mfr}: 0 Lu L+\
:2 00k.“ 91 3 = loankxX =o \L=—\ oil. \u: 30 T llo 103‘: 4'4 « \LL—rk 0L \(,=§ (b) (3 marks) Let T : R2 —> R2 be the oneto—one linear transformation deﬁned by
T($1,£E2) = 23171 — $2, 53171 — Find the standard matrix [T4] for the inverse transformation. m= [; ii
if} ﬁat—13s A: / MATH1850/2050 809 Name: Page 3 of 7 (4) (5 marks) Determine whether the set S 2 {p1, p2, pg, [94} is linearly depen
dent / independent, where p1=1—3327192:_1+$+$27p3=1+$—$27p4=_1+$2+$3 L€T \¢\9\+LLQI\i¢5\>3+l¢qpq =0 96 )<",><‘)>c1)><S 0" 3‘57“ 5‘55 “LS/“g \L\_'\(_1 +iég,’\4q : O
—k\ +i¢z~ \LéA—kt‘ = O
\Cq = O
\ ._.\ \ .( O \ "\ \ “l O
o l l o 0 o, \ \ o o
_l \ \ \ 0 22:134.; 0 o o o o
O O o l 0 o o a \ o
l —\ \ l 0
_’——E 0 \ i O O
2.544 LR o O O ‘ 0
o o O o O' 3‘“ [L3 Ls A new. vmmsl’i, we (a «so/MM? scurrth 5 [#3 VMmuLAz, "P‘U‘AL Sim“ ‘5 pd? upxékf.) s: S is Lin mm —. MATHl850/2050 809 Name: Page 4 of 7 (5) (6 marks) Let V = F(_OO7OO) be the vector space of all realvalued functions with the addition deﬁned by (f+g) = f(a:)+g(a:) and scalar multiplication
deﬁned by = k(f(a:)), and let W be the set of all functions f in F(_OO7OO) such that f(a:) = a1 sin(a:) + a2 cos(a:) where a1, a2 6 R.
(i) Show that W is a subspace of V. 6) case! cLosoug mum. micacu . {ﬁe UQ )swud SciK €,%€ so gm): <>H111I~60 +qz ceoCx) L gcx) = \mmeH (mood)
“zit/ﬂ, ﬂ.)‘l.1;l°nl°zéM* TM @400): {€ngch (Ql+t,)ﬂaao<>+ (quanta L/xr—’ (/w—J
€12 6 “2. so {JV 6%).
3
@ 0&ch (,LosolLE ()me SucLAfL MULTkOLtCI/l’ﬂéubz. geuj & Le [K’sﬁow LIX/6w. Lei—Hr} Q As A&°\J€ , Nd'b leéWL. My” =k~£0<>= (bgmoidiﬁym so \élgew~ 61L é “L § LL) Us A sowst—oe 01% (ii) Give a basis of W, and state the dimension of W
A Mia6 l$ 22 M34176, mxll v 59v MATH1850/2050 809 Name: Page 5 of 7 (6) (7 marks) Xx xuxb x11 15
243 7 —2 6320—10 1 2 1 2 1 00®3 0 WA: 2 44 10 2 andRZWﬂA): 000 06)
360 —3 3 000 0 0 (a) Let S = {V1,V2,V3,V4,V5} where
v1 = (2,1,2,3),v2 = (4,2,4,6),v3 = (3,1,4,0),v4 = (7,2,10,—3),v5 = (—2,1,2,3).
Give a basis for span(S) A 2""615 ‘6 lg\)\J7J>\l§\l (b) Give a basis for the nullspace of A
XrLgX'K Owl/'60., @0— XLE$)YR:£ “£04. $,%em Tues) R3 , x5 :0 L\ X\= —l.><'L_\')<'q : g X, "Z. \
a O
X
x; 2 s4, ‘3 £ 3) A wts FOL ‘5 (c) State the following:
(1) Tank(A) = 3 (11) nullity(A) = 1 3 (111) Tank(AT) (iv) nullity(AT) = \ MATHl850/2050 809 Name: Page 6 of 7 (7) (5 marks) True / False. Indicate whether the following statements are always
True or sometimes False. (a) Elementary row operations do not change the row space of a matrix
Er True False (b) The rank of a matrix A is equal to the number of parameters in the
solution of Ax = 0 True 3/ False (c) If T is a linear transformation, then T(0) = 0 E/True False (d) The plane 233—y+3z— 2 = 0 is parallel to the line (:13, y, z) = (—1,1,1)7L
t(0,1,1) True E/False (e) The vector (1/\/§, —1/\/§,0) is a unit vector with respect to the Eu
clidean inner product 3/ True False (f) For any m X n matrix A, nullity(A) is at most the minimum of m and n
True j/False (g) The set of all polynomials of degree 2 or less with even coefﬁcients is a
subspace of P2 True E/False (h) If 81 2 {61,192,193} and 82 = {61, 61—1—62, 61+63} then spa (81) = span(82)
True False (i) If W is a subspace of P7,, then dim(W) is at most n True E/False (j) If {V1, V2,V3} is a linearly independent set, then so is V1,V2}
True False MATHl850/2050 809 Name: Page 7 of 7 BONUS (4 marks) Let T1, T2 be two oneto—one, linear operators on R". Prove that
the composition operator T 2 T1 0 T2 is oneto—one as well. T 5T1 4" M W => [Tiiill Wm WM Mm—
m [TX ° ETC“,sz K \MUELﬂ—kJLE AS weLL (Pmoa— a? whenIsa mules) so T 15 4*! ...
View
Full
Document
This note was uploaded on 10/12/2011 for the course MATH 1020 taught by Professor Paulatu during the Spring '11 term at UOIT.
 Spring '11
 PaulaTu

Click to edit the document details