This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: MATH1850/2050 s09 Name: SOLUTKM Page 1 of 7 (1) (8 marks) Answer the following questions in the space provided: (a) Write an equation of the plane passing through the point (0, —1, 3) and
parallel to the plane 33: — y + 5 = 0.
Hum coo. sum: is 7\ . (3,4,0) so CL): *51+CZ*A.=0 wim ctr—'5, 5‘4, c=0
(,u'uas 3"‘64450 3 nos 'm oo'mr (0,4,1) 10 some coeJL
4+J.=o => &=~\ EQ'» 0F Punt is 3x:— "=0 ANS 3X‘3 l=O
(b) Find the distance between the points (1, —1, 1, 1) and (1,1,0,—1). (1"\x‘x‘)“ (l)\;o)"‘)= (0"7>\)1) 2c B\$‘Y'ABL€ is l\(°,‘1,\’1)“ \i q+\+q = 3 ANS: 3
(c) Use projau = @1123 to ﬁnd the orthogonal projection of u = (1,3, —2)
on a = (2,1,2). .a_ 1+3—q ( _ 7. \ z
u. __— 1.\,1)— (
ME (“44*“) ADAM/q) ANS; (WM)
(d) Are the vectors (3, —1, 5,3) and (2, 4, —2,3) orthogonal? (‘5,\,§,'b)—(1,H,~z,3)= CHM‘0‘“) =4 7‘0 So Lbr ounceeum ANS: U0 MATHl850/2050 809 Name: Page 2 of 7 (2) (4 marks) Find the steady state vector q for the following regular transition matrix 1/2 4/5
P = [1/2 1/5]
up“)? 1 so qur 93:1 g,_e_ (19)jog .,
L in I“? = ['/1. ’u/g‘l mow X ‘ X's/51°
"V1— q/C (Lem3“ O o 0
$0 L€r 111—: S, y 1‘: 8k S ail\g/Sls a. 14m: s=—‘— = E Tued %;X1ISK=L=XV3\ is we. stew; swz Jet—Tot (3) (5 marks) Find all the unit vectors orthogonal to V1 2 (1, —3, 2) and V2 2
(2, 1, 1) “\Ell‘: \i‘ISHNﬁ = {3—3 50 _)_C i; ”6? A on.“ JECTOL TAKE gt. = ELTHE ”é?“ Wﬁ. ﬁg?)
9 (W3i% s’xfﬁ) UL, & 0L2 Att TUE OuL7 un‘w vecms
L To \_’.\ 8‘!‘ MATH1850/2050 809 Name: Page 3 of 7 (4) (7 marks) The set S = {M1,M2,M3} Where 12 01 0—1
M1=i2oiM2=iuiM3=L1 oi is a basis for the vector space of 2 X 2 symmetric matrices. (a) If A = [ g _21 ] ﬁnd (A)g, the coordinate vector of A with respect to
the basis 8.
L€'\' A = L\r’\\+ LMﬁ‘LJ";  WM“ \4\:\‘1x\‘3
(,ev sys'rem 1;. = 2 23‘ +\¢L—\43 = 2
12‘ +kLk3 :1
k1, = \ w H' H A uene mo MATlLix l O 0 7.
O 0 Z
‘ QM o  O \ k ‘4\‘ 2) LL=—\’ k3: \
7. 1 \ 'L ———>
z ‘ _‘ 1. MOLE O O ‘ 
o \ O —\ O 0 0 O (b) If (3)8 = (—1, 1, 2), then ﬁnd 3,
®)$=('l,\,1) =) @=(_\‘)r’l‘*k_Mz+l}/\3= t; 'i] MATH1850/2050 809 Name: Page 4 of 7
(5) (7 marks) Let S = {V1,V2,V3,V4} Where
v1 = (1, —2, 1),v2 = (—1,2,0),v3 = (—3,6, —3),v4 = (2,5,2).
(a) Determine whether 8 spans R3. (Show all your work for full marks.)
LET (a .lo, c) 2.5 (o [2,3 3“ \4\ ‘l\+‘41d_1*‘4393+\’~(\JH‘(Q\B,L) GET sys'rm \L\ —\¢1, 3>\¢3\ 3.ch CL
~2\;.«2\4t+ek,+; \L.‘ = ‘o
\4 —?>\: \?_\L '—c ‘ ‘ “ (we “9‘ " '3 7' Q 0.16921‘0—‘4 1 o” w \1 u now: m: b Mk‘ﬂz {x \ —\ —'5
7, 7_ L and
5) o O \ ZqL‘cké—aoGooqI \ o o —a.\<‘— s; THC $Y$T€H is Auwvis causisﬁm', Sp 3 SOAas W} (b) Is 8 a basis for R3? (Brieﬂy justify your answer.) . . . ‘ '5
M01 A Msxc ; S is Lu). savanna“, smce Any ‘1: dead“ m “2' A”:
pagesSAcuuy So. 0 o o®%¢u;] MATHl850/2050 809 Name: Page 5 of 7 (6) (5 marks) Let p1 = 1 — a: — 2332, p2 = —2 + 23: + 5332, p3 = 3 — 4a: — 63:2.
Determine Whether the set S 2 {p1, p2, p3} is linearly independent.
(Show all steps for full marks.) LET \4‘ Qdkmu—hﬁs =0 ea 9mm k\ 2.l4,_\?>\4~5 :0
\¢\ +9.21 4w} = o
’2\L\'\'S\41L‘L3 =0 "'I 7.», wnu coat—Hutu? MAnixx I 7. “a
A:
‘7. g ‘1. TUE system “As om», mac vim)“ sewn, in: ”A750 M A = \‘o 1: ‘2:\V~2.'Q1+lu= C—\)(—\)h3\\ '1": +o 7.5
L g‘L 5° TiNiAL $0Lxﬁbo Ls uniaue , so SRs LG). ms. MATHl850/2050 809 Name: Page 6 of 7 (7) (9 marks) Let V 2 M33, the vector space of all 3 X 3 matrices with the
usual addition and scalar multiplication, and let W denote the subset of all
3 X 3 diagonal matrices. (a) Prove that W is a subspace of V. cucoL “abuzz omen. Aoém‘on ._ \F A ,3 {n u) , can: At?) Cs {9W A,(5muJ Mm FEELS] g: ‘23:;
O Q} 3 l o oo‘0 1'th Ax(S: \qﬁb‘ O O ‘\ is u.) UJ AS WELL.
‘33 0 AA“ 0
a. 0 Q3\ cuccv. cLosuuz uncut. Scum. Muninlmiou: it: A “\s {o UJ 3, k is AW P—k’ﬁk : CRELZ VA {“33“}.
mm» A As ASP“? , lnA= ‘44, ° ° \ is {o UJ As we»...
3 o o la! $0 \k) is A SO§¢A€E OF \I. (b) Exhibit a basis for W (you need not prove it is a basis). loo goo Can
000 o\o ooo
coo ’ooo ’ col MATHl850/2050 809 Name: Page 7 of 7 (8) (5 marks) True / False. Indicate Whether the following statements are always
True or sometimes False. (a) The plane 23: — 3y + 2 = 0 is a subspace of R3 True E/False (b)u><V=V><u True E/False (c) u is orthogonal to u >< V 3/ True False (d) If u is orthogonal to V + W, then u is orthogonal to V and to W
True 3/ False (e) The set of polynomials of degree 2 or less with positive coefﬁcients is a
subspace of P2 True EK False (f) The vectors (2, —4, 2, —4), (—3, 6, —3, 6) are linearly independent
True 3/ False (g) No 3 vectors in R5 Will span the entire space 3/ True False (h) The orthogonal projection of u on a is orthogonal to a True Q/ False E/True False (j) If {V1, V2} is a linearly dependent set, then so is {V1, V ,Vg}
True False (i)u><3u=0 ...
View
Full Document
 Spring '11
 PaulaTu

Click to edit the document details