{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

lecture27 - Wave Motion II Sinusoidal(harmonic)waves x...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Wave Motion II Wave Motion II Sinusoidal (harmonic) waves Energy and power in sinusoidal waves
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
For a wave traveling in the  +x direction, the displacement  y is given by   y (x,t) = A sin ( kx – ϖ t ) with  ϖ = kv A -A y x Remember: the particles in the medium move vertically.
Background image of page 2
y = A sin ( kx – ϖ t ) = A sin [ constant – ϖ t ]     ω = 2π f ω =“angular frequency” radians/sec f =“frequency”   cycles/sec    (Hz=hertz) The transverse displacement of a particle at a  fixed location  x  in the medium  is a sinusoidal function of time – i.e.,  simple harmonic motion:   The “ angular frequency”  of the particle motion is   ϖ ; the  initial  phase  is  kx  ( different  for different x, that is,  particles).
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Example A -A y x Shown is a picture of a travelling wave,    y=A sin (kx - ϖ t), at the instant for time t=0 . a b c d e i)  Which particle moves according to  y=A cos ( ϖ t)  ?
Background image of page 4
Image of page 5
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}