II-febb05 - ³ ³ D x-1 x-1 2 y 2 dxdy dove D = x y ∈ IR...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
VERIFICA SCRITTA DI Analisi matematica II 22 febbraio 2005 NOME. ............................................ COGNOME. ................................................ MATR. .................................................. GRUPPO. ........................................ 1) Determinare l’insieme di convergenza della seguente serie di funzioni + ± n =1 ( n + 1)!( x 2 - 3 x +1) n . Ris:. ...................................................... 2) Classi±care i punti stazionari della seguente funzione f ( x, y )= ² x 2 + y 2 1+ x 2 + y 2 . Ris:. ...................................................... 3) Calcolare l’integrale doppio
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ³ ³ D x-1 ( x-1) 2 + y 2 dxdy dove D = { ( x, y ) ∈ IR 2 : ( x-1) 2 + y 2 ≥ 1 , ≤ y ≤ √ 3( x-1) , 1 ≤ x ≤ 2 } . Ris:. ...................................................... 4) Risolvere il problema di Cauchy ´ y ± = 2 y + e 2 x y (0) = 3 . Ris:. ...................................................... 5) Sia ω = (2 x 3-3 x 2 y + y 2 ) dx + (2 xy-x 3-5) dy e sia γ una curva regolare atratti di estremi (5 ,-1) e (1 , 2). Calcolare µ γ ω . Ris:. .........................................................
View Full Document

This note was uploaded on 10/13/2011 for the course MAT 05 taught by Professor Trombetti during the Spring '10 term at Università DI Napoli "Federico II""".

Ask a homework question - tutors are online