Engineering Calculus Notes 91

# Engineering Calculus Notes 91 - 79 1.6 CROSS PRODUCTS...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 79 1.6. CROSS PRODUCTS Proposition 1.6.1. The 2 × 2 determinant x1 y 1 x2 y 2 is the signed area of the parallelogram OP RQ, where −→ − → → O P = x1 − + y 1 − ı −→ − → → O Q = x2 − + y 2 − ı and −→ −→ −→ − − − OR = OP + OQ. →→ Let us note several properties of the determinant ∆ (− , − ) which make it vw a useful computational tool. The proof of each of these properties is a straightforward calculation (Exercise 6): →→ Proposition 1.6.2. The 2 × 2 determinant ∆ (− , − ) has the following vw algebraic properties: →→→ vvw 1. It is additive in each slot:14 for any three vectors − 1 , − 2 , − ∈ R2 → →→ →→ →→ ∆ (− 1 + − , − 2 ) = ∆ (− 1 , − 2 ) + ∆ (− , − 2 ) v wv vv wv →→ − , − + − ) = ∆ (− , − ) + ∆ (− , − ) . → →→ →→ ∆( v v w vv vw 1 2 1 2 1 →→ 2. It is homogeneous in each slot: for any two vectors − 1 , − 2 ∈ R2 vv and any scalar r ∈ R →→ →→ →→ ∆ (r − 1 , − 2 ) = r ∆ (− 1 , − 2 ) = ∆ (− 1 , r − 2 ) . vv vv v v →→ 3. It is skew-symmetric: for any two vectors − 1 , − 2 ∈ R2 vv →→ →→ ∆ (− 2 , − 1 ) = −∆ (− 1 , − 2 ) . vv vv In particular, Corollary 1.6.3. A 2 × 2 determinant equals zero precisely if its rows are linearly dependent. 14 This is a kind of distributive law. ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online