ISM_T11_C06_D

# ISM_T11_C06_D - 394 2(a Chapter 6 Applications of Definite...

This preview shows pages 1–4. Sign up to view the full content.

394 Chapter 6 Applications of Definite Integrals 2. (a) 2x 4x dy dy dx dx œÊ œ Š‹ # S 2 x 1 4x dx Êœ ± 1 ' 0 2 # # È (c) S 53.23 ¸ (b) 3. (a) xy 1 x œÊœÊ œ ² Ê œ "" " # yd y y d y dx dx y # % S 2 1 y dy ± 1 ' 1 2 " ±% y È (c) S 5.02 ¸ (b) 4. (a) cos y cos y dx dx dy dy œ # # S 2 (sin y) 1 cos y dy ± 1 ' 0 1 È # (c) S 14.42 ¸ (b) 5. (a) x y 3 y 3 x "Î# "Î# "Î# # ±œ Ê œ ² ˆ‰ 23 x x ² ² dy dx ˆ "Î# ±"Î# " # 13 x ² dy dx # ±"Î# # S 2 3 x 1 1 3x dx ² ±² 1 ' 1 4 É ab "Î# # ±"Î# # (c) S 63.37 ¸ (b)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Section 6.5 Areas of Surfaces of Revolution and the Theorems of Pappus 395 6. (a) 1 y 1 y dx dx dy dy œ± Ê œ ± ±"Î# ±"Î# # # Š‹ ˆ‰ S2 y2y 1 1y d x Êœ ± ±± 1 ' 1 2 È É ab ±"Î# # (c) S 51.33 ¸ (b) 7. (a) tan y tan y dx dx dy dy œÊ œ # # S 2 tan t dt 1 tan y dy ± 1 '' 00 3y 1 Î È # 2 tan t dt sec y dy œ 1 1 Î (c) S 2.08 ¸ (b) 8. (a) x 1 x 1 dy dy dx dx œ² Ê œ ² È # # # S 2 t 1 dt 1 x 1 dx ² ± ² 1 11 5x È È È ## 2 t 1 dt x dx 1 È È # (c) S 8.55 ¸ (b) 9. y ; S 2 y 1 dx S 2 1 dx x dx œÊ œ œ ± ± œ x x dy dy dx dx 4 5 # # " " # ' a0 0 b4 4 Ê É 1 È 4 5; Geometry formula: base circumference 2 (2), slant height 4 2 2 5 œœ œ œ ± œ 1 È 5 x % ! ’“ È È È # Lateral surface area (4 ) 2 5 4 5 in agreement with the integral value œ " # ÈÈ 10. y x 2y 2; S 2 x 1 dy 2 2y 1 2 dy 4 5 y dy 2 5 y œÊœ Ê œ œ ± œ ± œ œ xd x d x dy dy # # # # # ! ' c0 0 d2 2 1 1 Ê È cd 2 5 4 8 5; Geometry formula: base circumference 2 (4), slant height 4 2 2 5 œ œ ± œ 1 È È Lateral surface area (8 ) 2 5 8 5 in agreement with the integral value œ " # 11. ; S 2 y 1 dx 2 1 dx (x 1) dx x dy dy (x 1) dx dx 55 x ± œ ± œ ± œ ± "" # # # # # \$ ² # " ' a1 1 b3 3 Ê É # 3 1 (4 2) 3 5; Geometry formula: r 1, r 2, œ ± ² ± œ œ±œ 9 3 # # # # " " "# ± È 1 slant height (2 1) (3 1) 5 Frustum surface area (r r ) slant height (1 2) 5 ± ² œ ± È 3 5 in agreement with the integral value œ 1 È
396 Chapter 6 Applications of Definite Integrals 12. y x 2y 1 2; S 2 x 1 dy 2 (2y 1) 1 4 dy 2 5 (2y 1) dy œ± Ê œ ²Ê œ œ ± œ ² ± œ ² xd x d x dy dy ## " # '' ' c1 1 d2 2 11 1 Ê Š‹ È È 2 5 y y 2 5 [(4 2) (1 1)] 4 5; Geometry formula: r 1, r 3, œ ² œ ²²² œ œ œ 1 ÈÈ È cd # # " "# slant height (2 1) (3 1) 5 Frustum surface area (1 3) 5 4 5 in agreement with œ² ± ² œÊ œ ± œ È È the integral value 13. S 1 dx; dy dy dx 3 dx 9 9 9 xx 2 x x œ ± # %\$ % É # ' 0 2 1 u 1 du x dx du dx; œ± Ê œ Ê œ x4 x 994 9 \$ " x 0 u 1, x 2 u œÊœ œÊ œ 25 9 S 2 u du u Äœ œ 1 ' 1 25 9 Î "Î# \$Î# " # #&Î* " 43 2 1 ± 1 œ œ 1 3 27 3 27 81 125 125 27 98 ˆ‰ ˆ ± 14. x dy dy dx dx 4x œ "" # ±"Î# # S 2 x 1 dx Êœ ± ' 34 15 4 Î Î 1 È É " 4x 2 x dx 2 x œ± œ ± ' 15 4 Î Î É ’“ \$Î# "&Î% \$Î% 4 2 1 ² ± œ ² 41 5 3 44 344 4 4 32 ˆ ˆ \$Î# \$Î# \$ (8 1) œ 42 8 33 15. dy (2 2x) dy (1 x) dx dx 2x x 2x x 2x x 1x œœ Ê œ ±± # # # S 2 2x x 1 dx ² ± ' 05 15 Þ Þ 1 È É # ± ± (1 x) 2x x # # 2 2x dx 1 ' Þ Þ È # ±²±² ± È È 2x x 1 2x x 2x x # 2d x 2 [ x ]2 œ 1 ' Þ Þ "Þ& !Þ& 16.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 10/13/2011 for the course MATHEMATIC 103 taught by Professor Thommas during the Spring '11 term at LCC Intl University.

### Page1 / 19

ISM_T11_C06_D - 394 2(a Chapter 6 Applications of Definite...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online