{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

ISM_T11_C10_C

# ISM_T11_C10_C - Section 10.2 Classifying Conic Sections by...

This preview shows pages 1–4. Sign up to view the full content.

Section 10.2 Classifying Conic Sections by Eccentricity 633 17. e take c 4 and a 5; c a b œ Ê œ œ œ 4 5 # # # 16 25 b b 9 b 3; therefore Ê œ Ê œ Ê œ # # 1 x 5 9 y # œ 18. The eccentricity e for Pluto is 0.25 e 0.25 Ê œ œ œ c a 4 " take c 1 and a 4; c a b 1 16 b Ê œ œ œ Ê œ # # # # b 15 b 15 ; therefore, 1 is a Ê œ Ê œ œ # È x 16 15 y model of Pluto's orbit. 19. One axis is from A( ) to B( 7) and is 6 units long; the "ß " other axis is from C( ) to D( 1 4) and is 4 units long. \$ß % ß Therefore a 3, b 2 and the major axis is vertical. The œ œ center is the point C( 4) and the ellipse is given by 1; c a b 3 2 5 (x 1) (y 4) 4 9 # # # # # œ œ œ œ c 5 ; therefore the foci are F 1 4 5 , the Ê œ ß È È Š eccentricity is e , and the directrices are œ œ c a 3 5 È y 4 4 4 . œ œ œ a 3 e 5 9 5 Š È 5 3 20. Using PF e PD, we have (x 4) y x 9 (x 4) y (x 9) x 8x 16 y œ œ Ê œ Ê È k k # # # # # # # 2 4 3 9 x 18x 81 x y 20 5x 9y 180 or 1. œ Ê œ Ê œ œ 4 5 x 9 9 36 20 y a b # # # # # 21. The ellipse must pass through ( 0) c 0; the point ( 1 2) lies on the ellipse a 2b 8. The ellipse Ê œ ß Ê œ is tangent to the x-axis its center is on the y-axis, so a 0 and b 4 the equation is 4x y 4y 0. Ê œ œ Ê œ # # Next, 4x y 4y 4 4 4x (y 24) 4 x 1 a 2 and b 1 (now using the # # # # # œ Ê œ Ê œ Ê œ œ (y 2) 4 standard symbols) c a b 4 1 3 c 3 e . Ê œ œ œ Ê œ Ê œ œ # # # # È c a 3 È 22. We first prove a result which we will use: let m , and " m be two nonparallel, nonperpendicular lines. Let be # ! the acute angle between the lines. Then tan . ! œ m m 1 m m To see this result, let be the angle of inclination of the ) " line with slope m , and be the angle of inclination of the " # ) line with slope m . Assume m m . Then and we # " # " # ) ) have . Then tan tan ( ) ! ) ) ! ) ) œ œ " # " # , since m tan and and œ œ œ tan tan m m 1 tan tan 1 m m ) ) ) ) " " ) m tan . # # œ )

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
634 Chapter 10 Conic Sections and Polar Coordinates Now we prove the reflective property of ellipses (see the accompanying figure): If 1, then x a b y œ b x a y a b and y a x y . # # # # # # w # # œ œ Ê œ b bx a a a x È È Let P(x y ) be any point on the ellipse ! ! ß y (x ) . Let F (c 0) and F ( c 0) Ê œ œ ß ß w ! " # bx b x a a x a y É be the foci. Then m and m . Let and PF PF y y x c x c œ œ ! be the angles between the tangent line and PF and PF , " " # respectively. Then tan ! œ œ œ œ Œ Š b x y a y x c b x y a y (x c) 1 b x b x c a y b x c b x a y a y x a y c b x y a y c a b x y b x c a b a b a b a y c c x y cy b œ . Similarly, tan . Since tan tan , and and are both less than 90°, we have . " ! " ! " ! " œ œ œ b cy 23. x y 1 c a b 1 1 2 e # # # # œ Ê œ œ œ Ê œ È È È c a 2 ; asymptotes are y x; F 2 ; œ œ œ „ ß ! È 2 1 È È Š directrices are x 0 œ œ „ a e 2 " È 24. 9x 16y 144 1 c a b # # # # œ Ê œ Ê œ x 16 9 y È 16 9 5 e ; asymptotes are œ œ Ê œ œ È c 5 a 4 y x; F 5 ; directrices are x 0 œ „ ß ! œ 3 a 4 e a b œ „ " 6 5 25. y x 8 1 c a b # # # # œ Ê œ Ê œ y 8 8 x È 8 8 4 e 2 ; asymptotes are œ œ Ê œ œ œ È È c 4 a 8 È y x; F 0 4 ; directrices are y 0 œ „ ß „ œ a b a e 2 œ „ œ „ È È 8 2
Section 10.2 Classifying Conic Sections by Eccentricity 635 26. y x 4 1 c a b # # # # œ Ê œ Ê œ y 4 4 x È 4 4 2 2 e

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}