mws_gen_dif_ppt_continuous

# mws_gen_dif_ppt_continuous - FORWARD DIFFERENCE METHOD PPT

This preview shows pages 1–10. Sign up to view the full content.

10/14/11 http://numericalmethods.eng.usf.edu 1 Differentiation-Continuous Functions Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Differentiation – Continuous Functions http://numericalmethods.eng.usf.edu
http://numericalmethods.eng.usf.edu 3 Forward Difference Approximation ( 29 ( 29 ( 29 x x f x x f x x f Δ Δ 0 Δ lim - + = For a finite ' Δ ' x ( 29 ( 29 ( 29 x x f x x f x f - +

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
http://numericalmethods.eng.usf.edu 4 x x+Δx f(x) Figure 1  Graphical Representation of forward difference approximation of first derivative. Graphical Representation Of  Forward Difference  Approximation
http://numericalmethods.eng.usf.edu 5 Example 1 The velocity of a rocket is given by ( 29 30 0 , 8 . 9 2100 10 14 10 14 ln 2000 4 4 - - × × = t t t t ν where  ' ' ν is given in m/s and  ' ' t is given in seconds.  a) Use forward difference approximation of the first derivative of        to  calculate the acceleration at            . Use a step size of            . b) Find the exact value of the acceleration of the rocket. c) Calculate the absolute relative true error for part (b). ( 29 t ν s t 16 = s t 2 Δ =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
http://numericalmethods.eng.usf.edu 6 Example 1 Cont. Solution ( 29 ( 29 ( 29 t t t t a i i i - + ν 1 16 = i t 2 Δ = t 18 2 16 1 = + = + = + t t t i i ( 29 ( 29 ( 29 2 16 18 16 - a
http://numericalmethods.eng.usf.edu 7 Example 1 Cont. ( 29 ( 29 ( 29 18 8 . 9 18 2100 10 14 10 14 ln 2000 18 4 4 - - × × = ν m/s 02 . 453 = ( 29 ( 29 ( 29 16 8 . 9 16 2100 10 14 10 14 ln 2000 16 4 4 - - × × = m/s 07 . 392 = Hence ( 29 ( 29 ( 29 2 16 18 16 - a

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
http://numericalmethods.eng.usf.edu 8 Example 1 Cont. 2 07 . 392 02 . 453 - 2 m/s 474 . 30 The exact value of  ( 29 16 a can be calculated by differentiating  ( 29 t t t 8 . 9 2100 10 14 10 14 ln 2000 4 4 - - × × = ν as ( 29 ( 29 [ ] t ν dt d t a = b)
http://numericalmethods.eng.usf.edu 9 Example 1 Cont. Knowing that

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## mws_gen_dif_ppt_continuous - FORWARD DIFFERENCE METHOD PPT

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online