{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter32004

Calculus: Early Transcendental Functions

Info icon This preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 3 Test October 4, 2004 Name 1. Use the definition of the derivative to find f H x L if f H x L = 1 ccccccccccccc 2 x 2. Find f H x L if f H x L = H cos 1 H x 2 + 2 LL sec è!!!!!!! 5 x 3 DO NOT SIMPLIFY. 3. Find f H x L if f H x L = log 3 è!!!!!!!!!!!! 3 x cccccccccccccccc ccccccccccccccc 5 2 x 2 DO NOT SIMPLIFY. 4. Find f H x L if f H x L = H ln 2 x L sin H x 2 L Give your answer in terms of x. 5. Find f H x L if f H x L = i k j j j j j j j x 2 cccc 3 x cccccccccccccccc ccccccccccccc sec 1 I è!!! x M y { z z z z z z z 2 DO NOT SIMPLIFY. 6. Find the equation of the normal line for x 2 cccc 3 + y 2 cccc 3 = 5 at the point H 8, 1 L . 7. Find the equation of the tangent line for y = 3 cccc π sin 2 J π cccc 3 x N at x = 5. 8. Find lim x 1 + f H x L , lim x 1 f H x L , lim h 0 + f H 1 + h L f H 1 L cccccccccccccccccccccccccccccccc ccccccccccc h , and lim h 0 f H 1 + h L f H 1 L cccccccccccccccccccccccccccccccc ccccccccccc h if f H x L = è!!!!!!!!!!!!!!
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}