{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter32004

# Calculus: Early Transcendental Functions

This preview shows pages 1–2. Sign up to view the full content.

Chapter 3 Test October 4, 2004 Name 1. Use the definition of the derivative to find f H x L if f H x L = 1 ccccccccccccc 2 x 2. Find f H x L if f H x L = H cos 1 H x 2 + 2 LL sec è!!!!!!! 5 x 3 DO NOT SIMPLIFY. 3. Find f H x L if f H x L = log 3 è!!!!!!!!!!!! 3 x cccccccccccccccc ccccccccccccccc 5 2 x 2 DO NOT SIMPLIFY. 4. Find f H x L if f H x L = H ln 2 x L sin H x 2 L Give your answer in terms of x. 5. Find f H x L if f H x L = i k j j j j j j j x 2 cccc 3 x cccccccccccccccc ccccccccccccc sec 1 I è!!! x M y { z z z z z z z 2 DO NOT SIMPLIFY. 6. Find the equation of the normal line for x 2 cccc 3 + y 2 cccc 3 = 5 at the point H 8, 1 L . 7. Find the equation of the tangent line for y = 3 cccc π sin 2 J π cccc 3 x N at x = 5. 8. Find lim x 1 + f H x L , lim x 1 f H x L , lim h 0 + f H 1 + h L f H 1 L cccccccccccccccccccccccccccccccc ccccccccccc h , and lim h 0 f H 1 + h L f H 1 L cccccccccccccccccccccccccccccccc ccccccccccc h if f H x L = è!!!!!!!!!!!!!!

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}