Chapter32005

Calculus: Early Transcendental Functions

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 3 Test October 3, 2005 Name 1. Use the definition of the derivative to find f ± H x L if f H x L = 1 cccccccccccccccc 2 x 2 2. Find f ± H x L if f H x L = I 5 sec 2 H x L M log 7 è!!!!!!!!! 3 x 2 5 DO NOT SIMPLIFY. 3. Find f ± H x L if f H x L = csc 1 I è!!!!! x 3 M cccccccccccccccc cccccccccccccccc cccc 2 tan H x 2 + 4 L Make use of the quotient rule. DO NOT SIMPLIFY. 4. Find f ± H x L if f H x L = H sin H x 2 LL ln H x 4 L Give your answer in terms of x. 5. Find f ± H x L if f H x L = i k j j sin 2 x + 1 cccccccccccccccc ccccccccccc 1 cos 2 x y { z z 2 Make use of the quotient rule. DO NOT SIMPLIFY.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
6. Find the equation of the normal line for x 2 è!!! 3 H xy L + 2y 2 = 5 at the point I è!!! 3,2 M . 7. Find f ± H x L for f H x L = » x 2 4 » 8. Find lim x →− 2 + f ± H x L , lim x 2 f ± H x L , lim h 0 + f H 2 + h L f H 2 L cccccccccccccccccccccccccccccccc ccccccccccccccccc h , and lim h 0 f H 2 + h L f H 2 L cccccccccccccccccccccccccccccccc ccccccccccccccccc h if 2 x + 4 −∞ ≤
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This document was uploaded on 10/16/2011.

Page1 / 4

Chapter32005 - Chapter 3 Test October 3 2005 1 Use the...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online