GreensPDE

# GreensPDE - c Eigenfunction expansions for two dimensions...

This preview shows page 1. Sign up to view the full content.

Physics 318 R.G. Palmer Electromagnetism 4/9/10 Green’s Function for the Poisson Equation 1. The nonhomogeneous problem for the Poisson Equation 2 Φ( x ) = - ρ ( x ) 0 in a domain V Closed boundary conditions on Φ( x ) at the surface S 2. The Green’s function G ( x , x 0 ) 2 G ( x , x 0 ) = - 4 πδ ( x - x 0 ) 3. The magic rule Φ( x ) = 1 4 πε 0 Z V G ( x 0 , x ) ρ ( x 0 ) d 3 x 0 - 1 4 π I S ± Φ( x 0 ) ∂G ∂n 0 ( x 0 , x ) - G ( x 0 , x ) Φ ∂n 0 ( x 0 ) ² da 0 4. Homogeneous boundary conditions for G ( x , x 0 ) We can choose homogeneous boundary conditions for G ( x , x 0 ) on S . Then G ( x , x 0 ) = G ( x 0 , x ) * Often we use the Dirichlet BC’s ( G ( x , x 0 ) = 0 for x on S ), giving Φ( x ) = 1 4 πε 0 Z V G D ( x , x 0 ) ρ ( x 0 ) d 3 x 0 - 1 4 π I S Φ( x 0 ) ∂G D ∂n 0 ( x , x 0 ) da 0 (Dirichlet Green’s Fn) or the Neumann BC’s ( ∂G ( x , x 0 ) /∂n = - 4 π/S for x on S ), giving Φ( x ) = h Φ i S + 1 4 πε 0 Z V G N ( x , x 0 ) ρ ( x 0 ) d 3 x 0 + 1 4 π I S G N ( x , x 0 ) Φ ∂n 0 ( x 0 ) da 0 (Neumann Green’s Fn) 5. Techniques for constructing Green’s function a. Method of images. [J2.6] b. Fundamental solution (1 / | x - x 0 | ) + solutions for Laplace’s equation. [J1.10]
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: c. Eigenfunction expansions for two dimensions and using the matching method for the third. [J3.9, J3.11] d. Eigenfunction expansions for three dimensions (see below). [J3.12] 6. Eigenfunction expansions ∇ 2 φ lmn ( x ) + λ lmn φ lmn ( x ) = 0 (eigenfunctions) Z V φ * l m n ( x ) φ lmn ( x ) d 3 x = δ l l δ m m δ n n (orthonormal) ∇ 2 Φ( x ) + μ Φ( x ) =-ρ ( x ) ε (nonhomogeneous problem) Use the same boundary conditions on φ lmn ( x ) as for G ( x , x ) G ( x , x ) = 4 π X l X m X n φ lmn ( x ) φ * lmn ( x ) λ lmn-μ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online