NumericalMethodsChaper04

# NumericalMethodsChaper04 - 1 Numerical Methods Chapter 4...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 Numerical Methods - Chapter 4 – Eigenvalue Problem } { } ]{ [ } ]{ [ = + x K x M & & Note: For structural and finite element problems ] [ M and ] [ K are symmetric. Try the solution: ) cos( ) ( ϕ ω + = t X t x i i ⇒ ) sin( ) ( ϕ ω ω + − = t X t x i i & ⇒ ) cos( ) ( 2 ϕ ω ω + − = t X t x i i & & ⇒ ) cos( } { )} ( { ϕ ω + = t X t x ) sin( } { )} ( { ϕ ω ω + − = t X t x & ) cos( } { )} ( { 2 ϕ ω ω + − = t X t x & & ⇒ } { ) cos( } ]{ [ ) cos( } ]{ [ 2 F t X K t X M = + + + − ϕ ω ϕ ω ω ⇒ } ]{ [ } ]{ [ 2 = + − X K X M ω ⇒ ( ) } { ] [ ] [ = − X M K λ ⇒ } ]){ [ ] [ ] ([ 2 1 = − − X I K M ω ⇒ ( ) { } } { ] [ ] [ = − X I D λ ⇔ } { } ]{ [ X X D λ = where ] [ ] [ ] [ 1 K M D − = and 2 ω λ = ⇒ ⎪ ⎪ ⎪ ⎭ ⎪ ⎪ ⎪ ⎬ ⎫ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ = ⎪ ⎪ ⎪ ⎭ ⎪ ⎪ ⎪ ⎬ ⎫ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ 3 2 1 3 2 1 3 33 32 31 2 23 22 21 1 13 12 11 M M O M M M L L L L M O M M M L L L n nn n n n n n n X X X X d d d d d d d d d d d d d d d d λ λ λ λ Note: ] [ ] [ ] [ 1 K M D − = is in general not symmetric. ⇒ } { } { = X trivial solution or ( ) ] [ ] [ det = − I D λ The eigenvalues are the roots of the polynomial given by: ( ) ] [ ] [ det = − I D λ n λ λ λ λ L 3 2 1 , , where 1 1 λ ω = , 2 2 λ ω = , 3 3 λ ω = … n n λ ω = Eigenvector Extraction Solve: ( ) { } } { ] [ ] [ ) ( = − i i X I D λ i = 1 to n ⇒ ⎪ ⎪ ⎪ ⎭ ⎪ ⎪ ⎪ ⎬ ⎫ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ = ⎪ ⎪ ⎪ ⎭ ⎪ ⎪ ⎪ ⎬ ⎫ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ) ( ) ( 3 ) ( 2 ) ( 1 3 2 1 3 33 32 31 2 23 22 21 1 13 12 11 M M O M M M L L L L M O M M M L L L i n i i i i i i i nn n n n n n n X X X X d d d d d d d d d d d d d d d d λ λ λ λ For each eigenvalue i λ there corresponds an eigenvector } { ) ( i X . 2 Suppose we found the eigenvalues i λ of matrix ] [ D and we want to find the corresponding eigenvectors. ⇒ ⎪ ⎪ ⎪ ⎭ ⎪ ⎪ ⎪ ⎬ ⎫ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ = ⎪ ⎪ ⎪ ⎭ ⎪ ⎪ ⎪ ⎬ ⎫ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − − − − ) ( ) ( 3 ) ( 2 ) ( 1 3 2 1 3 33 32 31 2 23 22 21 1 13 12 11 M M L M O M M M L L L i n i i i i nn n n n n i n i n i X X X X d d d d d d d d d d d d d d d d λ λ λ λ ⇒ ⎪ ⎪ ⎪ ⎭ ⎪ ⎪ ⎪ ⎬ ⎫ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ = ⎪ ⎪ ⎪ ⎭ ⎪ ⎪ ⎪ ⎬ ⎫ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′...
View Full Document

## This note was uploaded on 10/16/2011 for the course MECHANICAL 581 taught by Professor Wasfy during the Fall '11 term at IUPUI.

### Page1 / 9

NumericalMethodsChaper04 - 1 Numerical Methods Chapter 4...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online