{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

FISICA III, informe 1 OSCILACIONES ROTATORIAS LIBRES Y FORZADAS

FISICA III, informe 1 OSCILACIONES ROTATORIAS LIBRES Y FORZADAS

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Integrantes: Jessika Andrea Herrera Campos Grupo: B 2 Joulin Anyineth Parra M é ndez Supgrupo: 2 Carlos Alberto Saurith Manjares OSCILACIONES ROTATORIAS LIBRES Y FORZADAS OBJETIVOS Conocer   y   dominar   el   marco   te ó rico   y   conceptos   como   amplitud,   periodo,   movimiento  libremente amortiguado, velocidad, constante de amortiguamiento, entre otros. Encontrar el periodo del p é ndulo y la amplitud en oscilaciones amortiguadas y forzadas. A su  vez especificar los valores encontrados en gr á ficas que relacionen dichas medidas. Encontrar mediante la curva de resonancia el cambio de fase entre el excitador y el oscilador  (valor experimental). ANALISIS E INTERPRETACI Ó N DE DATOS Parte A a) Investigando el amortiguamiento de la oscilaci ó n Tabla 1 y Tabla 2 Tabla 1 : Amplitud de oscilaci ó n A, medida como funci ó n de tiempo  nT;  para i= 0,2 A No. De Oscilaciones:  4 t promedio T= t  promedio/4 w= 2 /T π Amplitud t1 t2 t3 6,79 6,95 6,76 6,83 1,71 3,67 20 6,79 6,99 6,9 6,89 1,72 3,65 18 6,91 6,88 6,96 6,92 1,73 6,63 15 6,98 6,89 6,98 6,95 1,74 3,61 10 Tabla 1 : Amplitud de oscilaci ó n A, medida como funci ó n de tiempo  nT;  para i= 0,3 A
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
No. De Oscilaciones:  4 t promedio T= t  promedio/4 w= 2 /T π Amplitud t1 t2 t3 6,86 6,91 7,02 6,93 1,73 3,63 20 6,92 6,94 6,99 6,95 1,74 3,61 18 6,99 6,94 7,01 6,98 1,75 3,59 15 7,02 6,96 6,99 6,99 1,75 3,59 10                     Tabla 2:  periodo de oscilaci ó n para diferentes corrientes par á sitas Corriente par á sita  i(A) Periodo de oscilaci ó n T  (s) 0,2 A 1,73 0,3 A 1,74 Gr á ficas Amplitud vs. Tiempo  (VER GRAFICA 1) Para hallar la constante de amortiguamiento usamos la siguiente ecuaci ó n: ϕ (t)= ϕ 0 Para linealizar dicha ecuaci ó n aplicamos Logaritmo natural Ln m= - γ γ =
Background image of page 2
Ajustar los datos a una l í nea recta           Para i= 0.2 A    Para i= 0.3 A     m=  -79.05 m = -148.35        b=   561   b = 1084.65 En los dos casos cuando la corriente es igual a 0.2 A y 0.3 A, la pendiente f í sicamente  representa la constante de amortiguamiento.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}