{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

07-Decoders - Decoders Now well look at some commonly used...

Info icon This preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Decoders 1 Decoders Now, we’ll look at some commonly used circuits: decoders and multiplexers. These serve as examples of the circuit analysis and design techniques from last lecture. They can be used to implement arbitrary functions. We are introduced to abstraction and modularity as hardware design principles. Throughout the semester, we’ll often use decoders and multiplexers as building blocks in designing more complex hardware.
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Decoders 2 What is a decoder In older days, the (good) printers used be like typewriters: To print “A”, a wheel turned, brought the “A” key up, which then was struck on the paper. Letters are encoded as 8 bit codes inside the computer. When the particular combination of bits that encodes “A” is detected, we want to activate the output line corresponding to A (Not actually how the wheels worked) How to do this “detection” : decoder General idea: given a k bit input, Detect which of the 2^k combinations is represented Produce 2^k outputs, only one of which is “1”.
Image of page 2
Decoders 3 What a decoder does A n-to-2 n decoder takes an n-bit input and produces 2 n outputs. The n inputs represent a binary number that determines which of the 2 n outputs is uniquely true. A 2-to-4 decoder operates according to the following truth table. The 2-bit input is called S1S0, and the four outputs are Q0-Q3. If the input is the binary number i, then output Qi is uniquely true. For instance, if the input S1 S0 = 10 (decimal 2), then output Q2 is true, and Q0, Q1, Q3 are all false. This circuit “decodes” a binary number into a “one-of-four” code.
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Decoders 4 How can you build a 2-to-4 decoder? Follow the design procedures from last time! We have a truth table, so we can write equations for each of the four outputs (Q0-Q3), based on the two inputs (S0-S1). In this case there’s not much to be simplified. Here are the equations: Q0 = S1’ S0’ Q1 = S1’ S0 Q2 = S1 S0’ Q3 = S1 S0
Image of page 4
Decoders 5
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern