This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: ma + b Theorem 4: Limit of the Sum or Difference of Functions lim x ® a f ( x ) ± g ( x ) [ ] = lim x ® a f ( x ) ± lim x ® a g ( x ) = L ± M If lim x® a f ( x ) = L and lim x® a g(x) = M,then Theorem 5: Limit of the Product lim x ® a f ( x )· g ( x ) [ ] = lim x ® a f ( x )· lim x ® a g ( x ) = L · M If lim x® a f(x) = L and lim x® a g(x) = M ,then Theorem 6: Limit of the n th Power of a function lim x ® a f ( x ) [ ] n = L n then integer, positive any is n and L f(x) lim If a x → = Theorem 7: Limit of a Quotient lim x ® a f ( x ) g ( x ) = lim x ® a f ( x ) lim x ® a g ( x ) = L M , M ¹ 0 If lim x® a f ( x ) = L and lim x ® a g ( x ) = M , then Theorem 8: Limit of the n th Root of a Function lim x ® a f ( x ) n = lim x ® a f ( x ) n = L n then , L f(x) lim and integer positive a is n If a x → = Note: If n is even then L ≥...
View
Full Document
 Summer '11
 Ma'amRosarioExconde
 Calculus, Differential Calculus, Limits, Limit, lim g

Click to edit the document details