Lesson 5 - Integration of Trigonometric Functions

# Lesson 5 - Integration of Trigonometric Functions - dx x 2...

This preview shows pages 1–7. Sign up to view the full content.

ANTIDERIVATIVES (INTEGRAL)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
THE BASIC TRIGONOMETRIC INTEGRATION FORMULAS OBJECTIVES: recall and apply the different trigonometric identities in simplifying a function; and integrate trigonometric functions using their differentials as the basis for evaluation
ASIC TRIGONOMETRIC FORMULAS From the differentials of the trigonometric functions, we derived the following integration formulas: C u tan u sec ln du u sec 5. C u csc - du u cot cscu 10. C sinu ln du u cot 4. C u sec du tanu secu 9. C cosu ln du u tan C u cot - du u csc 8. C secu ln du u tan 3. C u tan du u sec 7. C u sin du u cos . 2 C u cot u csc ln du u csc 6. C u cos du u sin . 1 2 2 + + = + = + = + = + - = + = + = + = + = + - = + - =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
TRIGONOMETRIC IDENTITIES : Reciprocal Identities : u tan 1 u cot . 6 u csc 1 u tan . 3 cu cos 1 u sec . 5 u sec 1 u cos . 2 u sin 1 u csc . 4 u csc 1 u sin . 1 = = = = = = Pythagorean Identities: u ccs 1 u cot . 3 u sec u tan 1 . 2 1 u cos u sin . 1 2 2 2 2 2 2 = + = + = +
TRIGONOMETRIC IDENTITIES : Double Angle Identities: u tan 1 u tan 2 u 2 tan . 3 u sin 2 1 1 - u cos 2 u sin - u cos u 2 cos . 2 cosu sinu 2 u 2 sin . 1 2 2 2 2 2 - = - = = = = Half-Angle Identities: ( 29 ( 29 u 2 cos 1 2 1 u sin . 2 u 2 cos 1 2 1 u cos . 1 2 2 - = + =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
EXAMPLE - - + +
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: dx x 2 cos x 2 sin-1 9. dx 4x) sec 4x (csc 8. dx x cos x sin x cos . 4 dx 1) lnx x(csc 2-lnx csc 7. xdx 3 cos x 3 sin 5 . 3 dx x 2 cos x 2 sin 1 6. dx x 1 csc x 5 . 2 dx x 4 sin log x 4 cot 5.x dx e sin e . 1 4 4 2 2 2 2 2 x 1 cos 2 2-x 2 x 2 π Evaluate the following integral. ∫-dx 1 x 2 sin 5 . 1 2 x 2 tan ∫ + + dx x 3 cot 1 x 3 cos 2 3 . 2 2 3 ∫ -dx 2 x cot 2 x tan . 3 2 ∫ dx x 2 sin 4 . 4 x 2 sec 5 log 2 ∫-+--dx x 2 cos 1 x 2 x cot x . 5 2 1 1 ∫-+ dx x 2 sin 1 1 x 2 sin . 6 ( 29 ∫--dx x / 3 csc 1 x 2 . 7 2 ∫-+ dx 1 x 2 sin 2 x 2 cos . 8 2 2 ∫ + dx e tan 1 e csc log e . 9 x 2 x 2 x ∫ dx xe . 10 2 x sec ln XERCISES: Evaluate each of the following integral...
View Full Document

{[ snackBarMessage ]}

### Page1 / 7

Lesson 5 - Integration of Trigonometric Functions - dx x 2...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online