This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: . The technique is used in integrating odd powers of : • odd powers secant, cosecant, hyperbolic secant and hyperbolic cosecant like , • inverses of trigonometric and hyperbolic functions like, ∫ xdx 4 sec 3 ∫ dx x h csc x 2 5 ∫xdx 2 sin 1 ∫xdx 3 cosh x 1 • products of transcendental /algebraic functions like ∫ xdx 4 sin x 2 ∫ xdx cos e x 2 EXAMPLE: Evaluate each of the following integrals. ∫ xdx 2 ln x . 1 ∫xdx 2 tan x . 2 1 2 ∫xdx 2 tan x . 3 1 2 ∫ xdx 3 cos e . 4 x 2 HOMEWORK #2: Evaluate each of the following integrals. ∫ θ θ θ d sin . 1 ∫ du u cos . 2 ∫ dx e x . 3 x 2 ∫α α 1 1 1 d Cos . 4 ∫ydy Sin . 5 1 ∫ 2 x 2 dx 3 x . 6 ∫dz z 1 z . 7 2 3 ∫ π πxdx 2 cos x . 8 2 ∫ ρ ρ ρ d sinh . 9 ∫ 4 1 tdt ln t . 10 ∫ dw ) w sin(ln . 11 ∫ + 1 2 x dx ) x 1 ( xe . 12 ∫dt ) 1 t 2 ( t . 13 7 i. j. CLASSWORK ∫ xdx ln . 1 2 ∫ π π β β 4 / 3 4 / 3 d csc . 2...
View
Full Document
 Fall '11
 Ma'amZapanta
 Calculus, Derivative, Integration By Parts, UDV

Click to edit the document details