{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Computer Organization And Design cis501

Computer Organization And Design cis501 - 1 Fundamentals of...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
1 Fundamentals of Computer Design And now for something completely different. Monty Python’s Flying Circus
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
1.1 Introduction 1 1.2 The Task of a Computer Designer 3 1.3 Technology and Computer Usage Trends 6 1.4 Cost and Trends in Cost 8 1.5 Measuring and Reporting Performance 18 1.6 Quantitative Principles of Computer Design 29 1.7 Putting It All Together: The Concept of Memory Hierarchy 39 1.8 Fallacies and Pitfalls 44 1.9 Concluding Remarks 51 1.10 Historical Perspective and References 53 Exercises 60 Computer technology has made incredible progress in the past half century. In 1945, there were no stored-program computers. Today, a few thousand dollars will purchase a personal computer that has more performance, more main memo- ry, and more disk storage than a computer bought in 1965 for $1 million. This rapid rate of improvement has come both from advances in the technology used to build computers and from innovation in computer design. While technological improvements have been fairly steady, progress arising from better computer architectures has been much less consistent. During the first 25 years of elec- tronic computers, both forces made a major contribution; but beginning in about 1970, computer designers became largely dependent upon integrated circuit tech- nology. During the 1970s, performance continued to improve at about 25% to 30% per year for the mainframes and minicomputers that dominated the industry. The late 1970s saw the emergence of the microprocessor. The ability of the microprocessor to ride the improvements in integrated circuit technology more closely than the less integrated mainframes and minicomputers led to a higher rate of improvement—roughly 35% growth per year in performance. 1.1 Introduction
Background image of page 2
2 Chapter 1 Fundamentals of Computer Design This growth rate, combined with the cost advantages of a mass-produced microprocessor, led to an increasing fraction of the computer business being based on microprocessors. In addition, two significant changes in the computer marketplace made it easier than ever before to be commercially successful with a new architecture. First, the virtual elimination of assembly language program- ming reduced the need for object-code compatibility. Second, the creation of standardized, vendor-independent operating systems, such as UNIX, lowered the cost and risk of bringing out a new architecture. These changes made it possible to successively develop a new set of architectures, called RISC architectures, in the early 1980s. Since the RISC-based microprocessors reached the market in the mid 1980s, these machines have grown in performance at an annual rate of over 50%. Figure 1.1 shows this difference in performance growth rates. FIGURE 1.1 Growth in microprocessor performance since the mid 1980s has been substantially higher than in ear- lier years. This chart plots the performance as measured by the SPECint benchmarks. Prior to the mid 1980s, micropro- cessor performance growth was largely technology driven and averaged about 35% per year. The increase in growth since then is attributable to more advanced architectural ideas. By 1995 this growth leads to more than a factor of five difference
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}