{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Problem 6.12

# Problem 6.12 - p x p in ฯ x x a x x โ  โฎ โ d โ โ =...

This preview shows pages 1–2. Sign up to view the full content.

Problem 6.12 [Difficulty: 2] Given: Velocity field Find: Expression for acceleration and pressure gradient; plot; evaluate pressure at outlet Solution: Basic equations Given data U 20 m s = L 2 m = p in 50 kPa = ρ 900 kg m 3 = Here u x ( ) U e x L = u 0 ( ) 20 m s = u L ( ) 7.36 m s = The x component of acceleration is then a x x ( ) u x ( ) x u x ( ) = a x x ( ) U 2 e 2 x L L = The x momentum becomes ρ u x u d d ρ a a = x p d d = The pressure gradient is then dp dx ρ L U 2 e 2 x L = Integrating momentum

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: p x ( ) p in ฯ x x a x x ( ) โ  โฎ โก d โ โ = p x ( ) p in U 2 ฯ โ e 2 x โ L โ 1 โ โ โ โ โ โ  โ 2 โ = Hence p L ( ) p in U 2 ฯ โ e 2 โ 1 โ ( ) โ 2 โ = p L ( ) 206 kPa โ = 0.5 1 1.5 2 50 100 150 200 x (m) dp/dx (kPa/m) 0.5 1 1.5 2 200 โ 150 โ 100 โ 50 โ x (m) ax (m/s2)...
View Full Document

{[ snackBarMessage ]}