Ch18-h4-problems-3

# Ch18-h4-problems-3 - yoon(jey283 Ch18-h4 turner(56545 This...

This preview shows pages 1–3. Sign up to view the full content.

yoon (jey283) – Ch18-h4 – turner – (56545) 1 This print-out should have 29 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001(part1of6)5.0points Conventional current flows through the ring shown in the figure below in such a way that if you stand at location A on the + x axis and look towards the ring, current appears to be flowing clockwise. The ring lies in the yz plane, encircling the x axis. x z y A B C D E F What is the direction of the magnetic field due to the ring at A? 1. ˆ B A = ( 0 , 1 , 0 ) 2. ˆ B A = ( 0 , 1 , 0 ) 3. ˆ B A = ( 0 , 0 , 1 ) 4. ˆ B A = ( 1 , 0 , 0 ) 5. ˆ B A = ( 0 , 0 , 1 ) 6. ˆ B A = (− 1 , 0 , 0 ) 002(part2of6)5.0points At B? 1. ˆ B B = (− 1 , 0 , 0 ) 2. ˆ B B = ( 0 , 1 , 0 ) 3. ˆ B B = ( 0 , 0 , 1 ) 4. ˆ B B = ( 1 , 0 , 0 ) 5. ˆ B B = ( 0 , 1 , 0 ) 6. ˆ B B = ( 0 , 0 , 1 ) 003(part3of6)5.0points At C? 1. ˆ B C = ( 0 , 1 , 0 ) 2. ˆ B C = ( 0 , 0 , 1 ) 3. ˆ B C = ( 0 , 1 , 0 ) 4. ˆ B C = ( 1 , 0 , 0 ) 5. ˆ B C = ( 0 , 0 , 1 ) 6. ˆ B C = (− 1 , 0 , 0 ) 004(part4of6)5.0points At D? 1. ˆ B D = ( 0 , 1 , 0 ) 2. ˆ B D = ( 0 , 0 , 1 ) 3. ˆ B D = ( 0 , 0 , 1 ) 4. ˆ B D = (− 1 , 0 , 0 ) 5. ˆ B D = ( 1 , 0 , 0 ) 6. ˆ B D = ( 0 , 1 , 0 ) 005(part5of6)5.0points At E? 1. ˆ B E = ( 0 , 0 , 1 ) 2. ˆ B E = ( 1 , 0 , 0 ) 3. ˆ B E = ( 0 , 0 , 1 ) 4. ˆ B E = (− 1 , 0 , 0 ) 5. ˆ B E = ( 0 , 1 , 0 ) 6. ˆ B E = ( 0 , 1 , 0 ) 006(part6of6)5.0points

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
yoon (jey283) – Ch18-h4 – turner – (56545) 2 At F? 1. ˆ B F = ( 0 , 0 , 1 ) 2. ˆ B F = ( 0 , 0 , 1 ) 3. ˆ B F = ( 0 , 1 , 0 ) 4. ˆ B F = ( 1 , 0 , 0 ) 5. ˆ B F = ( 0 , 1 , 0 ) 6. ˆ B F = (− 1 , 0 , 0 ) 007(part1of2)10.0points A loop of wire carries a conventional current of 0 . 7 A. The radius of the loop is 0 . 08 m. Calculate the magnitude of the magnetic field at a distance of 0 . 3 m from the center of the loop, along the axis of the loop. Use μ 0 4 π = 1 × 10 7 T · m / A . Answer in units of T 008(part2of2)10.0points What would the magnitude of the magnetic field be at the same location if there were 200 loops of wire in a coil instead of one loop? Answer in units of T 009(part1of2)10.0points A very long wire carrying a conventional cur- rent I is straight except for a circular loop of radius R (see the figure below). Calculate the magnitude of the magnetic field at the center of the loop. I R 1. vextendsingle vextendsingle vextendsingle vector B vextendsingle vextendsingle vextendsingle = μ 0 4 π 2 I R (1 + 2 π ) 2. vextendsingle vextendsingle vextendsingle vector B vextendsingle vextendsingle vextendsingle = μ 0 4 π 2 I R (1 + π ) 3. vextendsingle vextendsingle vextendsingle vector B vextendsingle vextendsingle vextendsingle = μ 0 4 2 I R 4. vextendsingle vextendsingle vextendsingle vector B vextendsingle vextendsingle vextendsingle = μ 0 4 π 2 I R 5. vextendsingle vextendsingle vextendsingle vector B vextendsingle vextendsingle vextendsingle = μ 0 4 π 2 I R (1 π ) 010(part2of2)10.0points What is the direction of the magnetic field at the center of the loop? Take the current to be moving in the + x direction and the loop extending outward in the + y direction, with the + z direction coming out of the page.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern