Unformatted text preview: π ∈ R S k , and r 1 ,...,r n ∈ R { , 1 } n . Output κ = E ( π ( c (1)); r 1 ) ,...,E ( π ( c ( n )); r n ) 2. V : Choose at random e = ( u,v ) ∈ R E G . Output e . 3. P : Output h ( π ( c ( u )) ,r u ) , ( π ( c ( v )) ,r v ) i . 4. V : Accept iﬀ c u 6 = c v , E ( c u ; r u ) = κ u , and E ( c v ; r v ) = κ v . You may assume that E : [ k ] × { , 1 } n → { , 1 } * is 11 on [ k ] × { , 1 } n ; E is eﬃciently computable; and for all i,j ∈ [ k ], E ( i ; U n ) and E ( j ; U n ) are computationally indistinguishable. 1...
View
Full Document
 Spring '08
 Sturtivant,C
 Computational complexity theory, zeroknowledge interactive proof

Click to edit the document details