{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

2SAT - Problems 1 Introduction Objectives Overview...

This preview shows pages 1–9. Sign up to view the full content.

Com 1 Where Can We Draw The Line? On the Hardness of Satisfiability  Problems

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Com 2 Introduction Objectives: To show variants of  SAT  and check if they are  NP-hard   Overview: Known results 2SAT Max2SAT
Com 3 What Do We Know? Checking if a propositional calculus formula is  satisfiable ( SAT ) is  NP-hard . ¬ (x ∧¬ z ( ¬ w x)) (x ∧¬ y) →¬ y ¬ (x ∧¬ z ( ¬ w x)) (x ∧¬ y) →¬ y Example: propositional calculus formula

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Com 4 What Do We Know? We concentrated on a special case:  CNF  formulas.    (.. .. ..... ..) (.. .. ..... ..)  (.. .. ..... ..) (.. .. ..... ..)  structure of CNF formulas
Com 5 What Do We Know? maximal number of  literals per clause 1 2 3 4 P NP-hard We’ll explore  this!

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Com 6 2SAT Instance:  A  2-CNF  formula  ϕ Problem:  To decide if  ϕ  is satisfiable ( ¬ x y) ( ¬ y z) (x ∨¬ z) (z y) ( ¬ x y) ( ¬ y z) (x ∨¬ z) (z y) Example: a 2CNF formula
Com 7 2SAT is in P Theorem:   2SAT  is polynomial-time decidable. Proof:  We’ll show how to solve this problem  efficiently using path searches in graphs… PAP 184-185

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Com 8 Searching in Graphs Theorem:  Given a graph  G=(V,E)  and two vertices  s,t V , finding if there is a path from  s  to  t  in  G  is  polynomial-time decidable.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}