sandler_sm_06_10

sandler_sm_06_10 - 6 6.10 (a) We start by using the method...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
6.10 (a) We start by using the method of Jacobians to reduce the derivatives ∂∂ T V TH VH TP TV HT PT VT HV H P PV dH T H T T V T V F H G I K J = () = =− F H G I K J , , , , , , , , , , ,, af Now from Table 6.1 we have that H P V T F H G I K J F H G I K J and H T CV T V T P T VP V F H G I K J =+− F H G I K J L N M O Q P F H G I K J P alternatively, since HUP V =+ H T U T T dP dT VV V V F H G I K J = F H G I K J + F H G I K J F H I K V Thus T V PVVTV T CVPT VPV TPT H V V F H G I K J = −− + = −+ + afaf Note: I have used P V V T P T V F H G I K J F H G I K J F H G I K J . T V TS VS ST SV S V T S T C P T S V F H G I K J = = = F H G I K J F H G I K J F H G I K J , , , , , , , , , , V (b) For the van der Waals fluid P T R Vb V F H G I K J = , P V RT a V T F H G I K J = + 23 2 Thus
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
T V RTV V b a V RT V b CV R V b H F H G I K J = −− () ++− +− 22 2 ns V after simplification we obtain T V aV b RTV b CV bV RV bV H F H G I K J = ()+− 2 3 C and T V RT CV b S F H G I K J =− V
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 2

sandler_sm_06_10 - 6 6.10 (a) We start by using the method...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online