chapter3part1

chapter3part1 - CS2710,ISSP2610...

Info iconThis preview shows pages 1–12. Sign up to view the full content.

View Full Document Right Arrow Icon
1 CS 2710, ISSP 2610 Foundations of Artificial Intelligence Solving Problems by Searching Chapter 3
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2 Ideal Rational Agents “… should take whatever action is expected to maximize its  performance measure on the basis of its percept sequence and  whatever built-in knowledge it has Key points: Performance measure Actions Percept sequence Built-in knowledge
Background image of page 2
3 Rational agents Environ ment Agent percepts actions ? Sensors Effectors How to design this?
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
4 Goal-based Agents Agents that take actions in the pursuit of a goal or  goals.
Background image of page 4
5 Goal-based Agents What should a goal-based agent do when none of  the possible actions leads to a goal? Choose an action that seems to get us closer to a  goal state
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
6 Problem Solving as Search view goal-attainment as problem solving; search  through a state space. In chess, e.g., a state is a board configuration
Background image of page 6
7 Problem Solving A problem is characterized as: An initial state  A set of actions  A goal test A cost function
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
8 Problem Solving A problem is characterized as: An initial state  A set of actions  successors:  state   set of states A goal test goalp: state   true or false A cost function edgecost edge between states   cost
Background image of page 8
9 Example  Problems Toy problems (but sometimes useful) Illustrate/test various problem-solving methods Concise, exact description Can be used to compare performance Examples : 8-puzzle, 8-queens problem, Cryptarithmetic, Vacuum world,  Missionaries and cannibals, simple route finding Real-world problem More difficult No single, agreed-upon description Examples : Route finding, Touring and traveling salesperson problems, VLSI  layout, Robot navigation, Assembly sequencing
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
10 Toy Problems The vacuum world The vacuum world The world has only two  locations Each location may or may not  contain  dirt The agent may be in one  location or the other 8 possible  world states Three possible actions:  Left,  Right, Suck Goal : clean up all the dirt 1 2 4 3 5 6 7 8
Background image of page 10
11 Toy Problems
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 12
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 10/22/2011 for the course CS CS 2710 taught by Professor Wiebe during the Fall '11 term at Pittsburgh.

Page1 / 35

chapter3part1 - CS2710,ISSP2610...

This preview shows document pages 1 - 12. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online