{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# Chapt_07 - Part II Vectors Matrices and Vector Calculus 7...

This preview shows pages 1–4. Sign up to view the full content.

Part II Vectors, Matrices, and Vector Calculus 7 7 Vectors EXERCISES 7.1 Vectors in 2-Space 1. (a) 6 i + 12 j (b) i + 8 j (c) 3 i (d) 65 (e) 3 2. (a) 3 , 3 (b) 3 , 4 (c) 1 , 2 (d) 5 (e) 5 3. (a) 12 , 0 (b) 4 , 5 (c) 4 , 5 (d) 41 (e) 41 4. (a) 1 2 i 1 2 j (b) 2 3 i + 2 3 j (c) 1 3 i j (d) 2 2 / 3 (e) 10 / 3 5. (a) 9 i + 6 j (b) 3 i + 9 j (c) 3 i 5 j (d) 3 10 (e) 34 6. (a) 3 , 9 (b) 4 , 12 (c) 6 , 18 (d) 4 10 (e) 6 10 7. (a) 6 i + 27 j (b) 0 (c) 4 i + 18 j (d) 0 (e) 2 85 8. (a) 21 , 30 (b) 8 , 12 (c) 6 , 8 (d) 4 13 (e) 10 9. (a) 4 , 12 − − 2 , 2 = 6 , 14 (b) 3 , 9 − − 5 , 5 = 2 , 4 10. (a) (4 i + 4 j ) (6 i 4 j ) = 2 i + 8 j (b) ( 3 i 3 j ) (15 i 10 j ) = 18 i + 7 j 11. (a) (4 i 4 j ) ( 6 i + 8 j ) = 10 i 12 j (b) ( 3 i + 3 j ) ( 15 i + 20 j ) = 12 i 17 j 12. (a) 8 , 0 0 , 6 = 8 , 6 (b) 6 , 0 0 , 15 = 6 , 15 13. (a) 16 , 40 − − 4 , 12 = 20 , 52 (b) 12 , 30 − − 10 , 30 = 2 , 0 14. (a) 8 , 12 10 , 6 = 2 , 6 (b) 6 , 9 25 , 15 = 31 , 24 339

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
7.1 Vectors in 2-Space 15. −−−→ P 1 P 2 = 2 , 5 16. −−−→ P 1 P 2 = 6 , 4 17. −−−→ P 1 P 2 = 2 , 2 18. −−−→ P 1 P 2 = 2 , 3 19. Since −−−→ P 1 P 2 = −−→ OP 2 −−→ OP 1 , −−→ OP 2 = −−−→ P 1 P 2 + −−→ OP 1 = (4 i + 8 j ) + ( 3 i + 10 j ) = i + 18 j , and the terminal point is (1 , 18). 20. Since −−−→ P 1 P 2 = −−→ OP 2 −−→ OP 1 , −−→ OP 1 = −−→ OP 2 −−−→ P 1 P 2 = 4 , 7 − − 5 , 1 = 9 , 8 , and the initial point is (9 , 8). 21. a (= a ), b (= 1 4 a ), c (= 5 2 a ), e (= 2 a ), and f (= 1 2 a ) are parallel to a . 22. We want 3 b = a , so c = 3(9) = 27. 23. 6 , 15 24. 5 , 2 25. a = 4 + 4 = 2 2; (a) u = 1 2 2 2 , 2 = 1 2 , 1 2 ; (b) u = 1 2 , 1 2 26. a = 9 + 16 = 5; (a) u = 1 5 3 , 4 = 3 5 , 4 5 ; (b) u = 3 5 , 4 5 27. a = 5; (a) u = 1 5 0 , 5 = 0 , 1 ; (b) u = 0 , 1 28. a = 1 + 3 = 2; (a) u = 1 2 1 , 3 = 1 2 , 3 2 ; (b) u = 1 2 , 3 2 29. a + b = 5 , 12 = 25 + 144 = 13; u = 1 13 5 , 12 = 5 13 , 12 13 30. 2 a 3 b = 5 , 4 = 25 + 16 = 41; u = 1 41 5 , 4 = 5 41 , 4 41 31. a = 9 + 49 = 58; b = 2( 1 58 )(3 i + 7 j ) = 6 58 i + 14 58 j 32. a = 1 4 + 1 4 = 1 2 ; b = 3( 1 1 / 2 )( 1 2 i 1 2 j ) = 3 2 2 i 3 2 2 j 33. 3 4 a = 3 , 15 / 2 34. 5( a + b ) = 5 0 , 1 = 0 , 5 35. 36. 37. x = ( a + b ) = a b 38. x = 2( a b ) = 2 a 2 b 340
7.1 Vectors in 2-Space 39. b = ( c ) a ; ( b + c ) + a = 0 ; a + b + c = 0 40. From Problem 39, e + c + d = 0 . But b = e a and e = a + b , so ( a + b ) + c + d = 0 . 41. From 2 i + 3 j = k 1 b + k 2 c = k 1 ( i + j ) + k 2 ( i j ) = ( k 1 + k 2 ) i + ( k 1 k 2 ) j we obtain the system of equations k 1 + k 2 = 2, k 1 k 2 = 3. Solving, we find k 1 = 5 2 and k 2 = 1 2 . Then a = 5 2 b 1 2 c . 42. From 2 i + 3 j = k 1 b + k 2 c = k 1 ( 2 i + 4 j ) + k 2 (5 i + 7 j ) = ( 2 k 1 + 5 k 2 ) i + (4 k 1 + 7 k 2 ) j we obtain the system of equations 2 k 1 + 5 k 2 = 2, 4 k 1 + 7 k 2 = 3. Solving, we find k 1 = 1 34 and k 2 = 7 17 . 43. From y = 1 2 x we see that the slope of the tangent line at (2 , 2) is 1. A vector with slope 1 is i + j . A unit vector is ( i + j ) / i + j = ( i + j ) / 2 = 1 2 i + 1 2 j . Another unit vector tangent to the curve is 1 2 i 1 2 j .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 34

Chapt_07 - Part II Vectors Matrices and Vector Calculus 7...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online