Homework_10 - Nguyen Thanh Homework 10 Due 7:00 pm Inst...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Nguyen, Thanh – Homework 10 – Due: Feb 26 2008, 7:00 pm – Inst: Weathers 1 This print-out should have 10 questions. Multiple-choice questions may continue on the next column or page – fnd all choices be±ore answering. The due time is Central time. 001 (part 1 o± 1) 10 points 5 . 3 Ω 4 . 3 Ω 19 . 2 Ω 25 . 2 V 12 . 6 V Find the current through the 19 . 2 Ω lower- right resistor. Correct answer: 0 . 845638 A. Explanation: r 1 r 2 R E 1 E 2 A D E B C F i 1 i 2 I Let : E 1 = 25 . 2 V , E 2 = 12 . 6 V , r 1 = 5 . 3 Ω , r 2 = 4 . 3 Ω , and R = 19 . 2 Ω . From the junction rule, I = i 1 + i 2 . Applying Kirchho²’s loop rule, we obtain two equations: E 1 = i 1 r 1 + I R (1) E 2 = i 2 r 2 + I R = ( I - i 1 ) r 2 + I R = - i 1 r 2 + I ( R + r 2 ) , (2) Multiplying Eq. (1) by r 2 , Eq. (2) by r 1 , E 1 r 2 = i 1 r 1 r 2 + r 2 I R E 2 r 1 = - i 1 r 1 r 2 + I r 1 ( R + r 2 ) Adding, E 1 r 2 + E 2 r 1 = I [ r 2 R + r 1 ( R + r 2 )] I = E 1 r 2 + E 2 r 1 r 2 R + r 1 ( R + r 2 ) = (25 . 2 V) (4 . 3 Ω) + (12 . 6 V) (5 . 3 Ω) (4 . 3 Ω) (19 . 2 Ω) + (5 . 3 Ω) (19 . 2 Ω + 4 . 3 Ω) = 0 . 845638 A . keywords: 002 (part 1 o± 1) 10 points 3 Ω 5 Ω 7 Ω 9 Ω 10 Ω 2 Ω 1 Ω 2 Ω 11 V 28 V 32 V Find the magnitude o± the current in the 11 V cell. Correct answer: 1 . 006 A. Explanation: i 1 R 1 i 3 R 2 i 1 R 3 i 3 R 4 i 2 R 5 r 1 r 2 r 3 E 1 E 2 E 3
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Nguyen, Thanh – Homework 10 – Due: Feb 26 2008, 7:00 pm – Inst: Weathers 2 Let : E 1 = 11 V , E 2 = 28 V , E 3 = 32 V , R 1 = 3 Ω , R 2 = 5 Ω , R 3 = 7 Ω , R 4 = 9 Ω , R 5 = 10 Ω , r 1 = 2 Ω , r 2 = 1 Ω , and r 3 = 2 Ω . Basic Concepts: Kirchhof’s Laws: X V = 0 around a closed loop . X I = 0 at a circuit junction . Solution: Applying Kirchhof’s law to the outside loop and the lower loop we get 3 equa- tions in 3 unknowns; i.e. , E 1 -E 3 = ( R 3 + r 1 + R 1 ) i 1 + ( R 2 + r 3 + R 4 ) i 3 (1) E 2 -E 3 = ( R 5 + r 2 ) i 2 + ( R 2 + r 3 + R 4 ) i 3 (2) 0 = - i 1 - i 2 + i 3 . (3) Subtracting the ±rst two equations, E 1 -E 2 = ( R 3 + r 1 + R 1 ) i 1 - ( R 5 + R 2 ) i 2 (4) Eliminating i 3 in equations (2) and (3), E 2 -E 3 = ( R 2 + r 3 + R 4 ) i 1 + ( R 2 + r 3 + R 4 + R 5 + r 2 ) i 2 (5) Multiply equation (4) by ( R 2 + r 3 + R 4 + R 5 + r 2 ) and equation (5) by ( R 5 + r 2 ): ( E 1 -E 2 ) ( R 2 + r 3 + R 4 + R 5 + r 2 ) = ( R 3 + r 1 + R 1 ) × ( R 2 + r 3 + R 4 + R 5 + r 2 ) i 1 - ( R 5 + r 2 ) × ( R 2 + r 3 + R 4 + R 5 + r 2 ) i 2 ( E 2 -E 3 ) ( R 5 + r 2 ) = ( R 2 + r 3 + R 4 )( R 5 + r 2 ) i 1 - ( R 5 + r 2 ) × ( R 2 + r 3 + R 4 + R 5 + r 2 ) i 2 Adding, E 1 ( R 2 + r 3 + R 4 + R 5 + r 2 ) -E 2 ( R 2 + r 3 + R 4 ) -E 3 ( R 5 + r 2 ) = [( R 3 + r 1 + R 1 )( R 2 + r 3 + R 4 + R 5 + r 2 ) + ( R 2 + r 3 + R 4 )( R 5 + r 2 )] i 1 Since a = R 2 + r 3 + R 4 + R 5 + r 2 = 5 Ω + 2 Ω + 9 Ω + 10 Ω + r 2 = 27 Ω , b = R 2 + r 3 + R 4 = 5 Ω + 2 Ω + 9 Ω = 16 Ω , c = R 5 + r 2 = 10 Ω + 1 Ω = 11 Ω , and d = ( R 3 + r 1 + R 1 ) a + b c = (7 Ω + 2 Ω + 3 Ω) (27 Ω) + (16 Ω) (11 Ω) = 500 Ω , we have E 1
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 9

Homework_10 - Nguyen Thanh Homework 10 Due 7:00 pm Inst...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online