22+Production_Scheduling_in_MRP

22+Production_Scheduling_in_MRP - MRP to satisfy them In...

Info icon This preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
PRODUCTION SCHEDULING IN  PRODUCTION SCHEDULING IN  MRP MRP
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
PRODUCTION SCHEDULING IN MRP PRODUCTION SCHEDULING IN MRP Once the netting is complete the production must be scheduled  to  satisfy  them.  In  planning  the  production  to  satisfy  the  net  requirements, we have the choices ranging from manufacturing  all at once to manufacturing each bucket’s net requirement in  the period needed. Various lot sizing models are proposed to  help  answer  this  question  (collectively  known  as  dynamic  lot  sizing  models:  Wagner-Within  model,  lot-for-lot,  fixed  order  quantity, fixed order period, part period balancing, etc.)
Image of page 2
Dynamic Lot Sizing Models (DLS) Dynamic Lot Sizing Models (DLS) Dynamic  lot  sizing  models  come  to  bear  when  demand  is  lumpy,  i.e.,  is  not  uniform  during  the  planning  horizon.  We  organize the discussion of “lumpy demand” models in three  groups of solution techniques, as follows: Simple rules are decision rules for the order quantity that  are  not  based  directly  on  “optimizing”  the  cost  function  but  that  have  certain  other  merits.  These  simple  methods  are  significant because they are widely used, especially in MRP  systems.
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Dynamic Lot Sizing Models (DLS) Dynamic Lot Sizing Models (DLS) Heuristic rules aim at achieving a low-cost solution that is  not necessarily optimal. Wagner-Whitin is  an  optimization  approach  to  lumpy  demand. SIMPLE  RULES There  are  three  rules  that  are  common- fixed period demand, periodic order quantity, and lot for lot  (nicknamed “L4L”).
Image of page 4
Dynamic Lot Sizing Models (DLS) Dynamic Lot Sizing Models (DLS) Fixed  period  demand This  approach  is  equivalent  to  the  simple  rule  of  ordering  “m  months  of  future  demand.”  For  example,  if  we  want  to  order  “two  months  of  demand,”  we  sum  the  forecasted  demand  for  the  next  two  months.  This  rule  is  different  from  the  “months  of  supply”  measure  of  effectiveness. The latter is an aggregate measure based on  dollar value of all inventory items. Fixed period demand is for  an individual item and is based on quantity.
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Dynamic Lot Sizing Models (DLS) Dynamic Lot Sizing Models (DLS) Example:  Fixed  period  demand.  Consider  the  following  two  cases,  where  the  forecasted  demand  is  given  in  the  table below. Solution:  If we use a fixed period of six weeks, the order  quantity is 60 for (a) and 72 for (b). The EOQ is preferred  for constant demand.
Image of page 6
Image of page 7
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern