notes16 2317

# notes16 2317 - Curl of a Vector ECE 2317 Applied...

This preview shows pages 1–5. Sign up to view the full content.

Prof. Filippo Capolino ECE Dept. Fall 2006 Notes 16 ECE 2317 ECE 2317 Applied Electricity and Magnetism Applied Electricity and Magnetism Notes prepared by the EM group, University of Houston . (used by Dr. Jackson, spring 2006) Curl of a Vector Curl of a Vector ± ± 0 0 0 1 lim 1 lim 1 lim x y z C s C s C s xcu r lV V d r S yc u r Vd r S zc u r r S Δ→ ⋅≡ Δ Δ Δ ± v v v ( ) , , vector function Vxyz = vector function curl V = x y z C x C y C z Δ S Δ S Δ S Note: paths are defined according to the “right-hand rule” Curl of a Vector (cont.) Curl of a Vector (cont.) “curl meter” ˆˆ ˆ ,, xy z = ± A velocityof rotation (in the sense indicated) curl V ⋅= ± A Assume that V represents the velocity of a fluid. Curl Calculation Curl Calculation y z Δ y Path C x : z 1 2 3 4 C x 0, , 0 2 0, , 0 2 0, 0, 2 0, 0, 2 xx xyzz CC z y y y V dr V dx V dy V dz V z y Vz z Vy z Δ ⎛⎞ + + ≈ Δ ⎜⎟ ⎝⎠ Δ −− Δ Δ +− Δ Δ −Δ ∫∫ vv (1) (2) (3) (4)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
() 0, ,0 22 0, 0, 0, 0, x x zz C yy y z y z C VV Vd r yz y zy z V V SS V V r S ⎡Δ Δ ⎛⎞ −− ⎜⎟ ⎢⎥ ⎝⎠ ⋅≈ Δ Δ Δ ⎣⎦ Δ −ΔΔ Δ −Δ ∂∂ Δ v v Curl Calculation (cont.) Curl Calculation (cont.) x y z C V V r S v Δ ± 0 1 lim x C s xcu r lV r S v Δ→ ⋅≡ Δ ± y z V V xc u r ⋅= From the curl definition: Hence Curl Calculation (cont.) Curl Calculation (cont.) Similarly, y z x z C y x C V V r S zx V V r S xy v v Δ Δ ± ± xx curl V x y z =− +− ± Hence, ± x z V V yc u r z x y x V V zc u r ± Curl Calculation (cont.) Curl Calculation (cont.) Del Operator Del Operator ± ± ± ± ± ± ± ± xyz x x Vx y z x V y V z V VVV xz ∂∂∂ ∇× = + + × + + = ±± ± ± ± ± ∇≡ + + ±
Del Operator (cont.) Del Operator (cont.) curl V V =∇× Hence, Example Example ± () ± 22 3 32 2 Vx x y z yx z zx z =+ + ± ± ± 03 2 3 4 6 z yz x y x y z ∇× = + + ± ± ± yy x x zz VV y z xz xy ∂∂ ⎛⎞ × =− −− +− ⎜⎟ ⎝⎠ ± Example Example ± ( ) ± ± 1 x x y y z Vz = = + = ± ± x y Example (cont.) Example (cont.) 1 = ± 10 ± ⋅ =− < x y

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Summary of Curl Formulas Summary of Curl Formulas l ± () 11 zz V VV V Vz φ φρ ρ ρφ ⎛⎞ ∂∂ ⎜⎟ ∇× = + + ⎝⎠ ± ( ) ± ± sin 1 1 sin sin rr Vr V rV V r r r φφ θ θθ ⎡⎤ = + + ⎢⎥ ⎣⎦ ± ± ± yy x x Vx y z yz xz xy × =− −− +− ± Stokes Stokes ’ Theorem Theorem ± n
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 11

notes16 2317 - Curl of a Vector ECE 2317 Applied...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online