notes_for_2apr - Two special cases: a) Ifg(X1, X2) = (X1 -...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Two special cases: a) Ifg(X1, X2) = (X1 - u1)(X2 - 112), E(g(X1, X2)) is called the covariance of X1 and X2 , denoted C0V(X1,X2). This is the definitional formula for computing Cov(X1,X2). A computing formula for the covariance is C0V(X1,X2) = E((X1— u1)(X2 - uz )) : definition ' = [E(X1X2)l -u1u2 rcomputing (See p.184 for the covariance). b) COV(X1,X2)/6162 is called the correlation coefficient of X1 and X2 , denoted p. Theorem: —1 s p S 1. p measures the "degree" of linearity in the jointh or pdf X1 and X 2 , and is sometimes called the standardized covariance. (Make sure to distinguish between r and p, just as we distinguish between F (x) and a crf 0 give, just as we distinguish between s and 6, just as we distinguish between X and 11, etc.). . Example: Return to problem 5.76 on p. 188). f(x1,x2)=-:-(X1+x%) 0<x1 <1 and0<x2 <1 = 0 elsewhere 1 6 1 uX1=Ix1—-(x1+—)dxl=3/5 =O.6 0 5 3 —jx 9(x2+l)dx —3/5=06 HXZ 025 2 2 2 - ll E(X1X2) = jjx1x22(x1+ x%)dx2dx1= 7/20 = 0.35 00 The computing form therefore implies Cov(X1,X2) = (7/20) - (3/5)(3/5) = -1/ 100 = — 0.01 T 0 find p, we need only find 01 and 62. Var(X1) = of = E(X12) — (3/5)2, and . 1 . E(X12) = 1x12 gm +%)dx1 = (13/30) :> 612 = (13/30)—9/25 = 11/150 ' 0 Similarly, 6% = 2/25 :> p = —_1/1—00— = —0.13 ./(11/150)(2/25) Some more results 1) If g(X1,X2)=X1+X2, then E(X1+X2)= H1+H23Var(X1+X2)= Cy12 +5; +2COV(X13X2) E(X1 —X2) = u. -u2,Var(X1+X2)= 6.2 +o§ —2Cov(X1.X2) 3) If X1 and X2 are independent random variables, then Cov(X1,X2) =0, and therefore p = 0. 4) If g(X1,X2) = ale + azXz, where a1 and a2 are known, given constants, then E(31X1+ azxz) = a1111+ azliz Var(a1X1+ azXZ) = alzol2 + a§o§ + 2a1a2Cov(X1,X2) Example (For a gas station) X1 = amount of regular unleaded gasoline, in gals, purchased on a given day X2 = amount of extra unleaded gasoline, in gals, purchased on a given day X3 = amount of super unleaded gasoline, in gals, purchased on a given day X4 = amount of diesel fuel, in gals, purchased on a given day. f (x1, x2,x3,x4) denotes the multivariate pdf (assume the k=4 RVs are continuous) of the 4 4 random variables. If they were assumed independent, then f (x1,x2, x3,x4) = Hf, (Xi) , Where i=1 f,- (xi) is the (marginal) pdf of X. Of course, independence is an unreasonable assumption in this case. Suppose the price of regular is a1 = $2.70, the price of extra is a2 = $2.80, the price of super is a3 = $2.90, and the price of diesel is a4 = $2.70. Then the daily revenue is a random variable, X where X = 2.7X1+ 2.8X2 + 2.9X3 +2.7X4 is a g(X1,X2,X3,X4) , and a g(X1,X2,X3,X4) that is a linear combination of X1, X2,X3,X4. Suppose u1 = 1200, u2 = 500, M = 200,u4 = 180. Then, 4 the expected daily revenue, E(X) is Zaiui = 2.7(1200) + 2.8(500) + 2.9(200) + 2.7(180) = 5706. ‘ i=1 Now suppose <31 =100,o2 = 80,63 = 50,64 = 60 , and suppose the six covariances are (Xi,XJ-) Cov (Xi,Xj) pij X1,X2 800 0.10 X1,X3 - 250 - 0.05 X1,X4 100 0.0167 X2,X3 120 0.03 X2,X4 - 60 — 0.0125 X3,X4 80 0.0267 4 4 4 Therefore, Zaizoi2 = 170345, and Z ZaiajCov(Xi ,Xj) = 5945.1 (i i jin the sum) i=1 i=1j=1 :> a; =176290.1: 6x419.87 Note that if the four randOm variables were assumed independent then ox = V170345 21412.73. If Y is the mean amount of gallons purchased on a given day, then Y =(X1+X2 +X3 +X4)/4 and 4 4 4 . 4 of 2; zeov(Xi,Xj)L/"‘ ‘i “Y = 211i /4 = 520, Var(Y) = i=1 +L‘Fl—— = 1406.25 + 98.75 = 1505 , and therefore i—l _ 16 16 the standard deviation of Y is 38.79. k k k k - Note: 2 Zaiaj cov(Xi,XJ-)=22 Z aiaj cov(Xi,XJ-) i=1j=1 \ i=1j=1 i¢j i<j ...
View Full Document

This note was uploaded on 10/26/2011 for the course INDE 2333 taught by Professor Staff during the Spring '08 term at University of Houston.

Page1 / 3

notes_for_2apr - Two special cases: a) Ifg(X1, X2) = (X1 -...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online