solutions hw 7

# solutions hw 7 - 1 W hic h o f the fo l o w ing is the c o...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 ) W hic h o f the fo l o w ing is the c o r e c t s c a t e r d ia g ra m fo r the s e d a ta ? a ) * y x 3 1 7 2 5 3 1 4 14 5 2) T he e s tim a te d re g re s io n e q ua tio n fo r the d a ta is : a ) y = 0 .1 + 1.6 x ̂ b ) * y = 0 .2 + 2 .6 x ̂ c ) y = 0 .3 + 3.6 x ̂ d ) y = 0 .4 + 4 .6 x ̂ x y b = ₁ ∑ x y − nx y ̄ 3 1 ∑ x ² − nx ² ̄ 14 4 2.6 15 9 0 .2 4 16 70 25 14 6 5 3 8 3) T he p re d ic te d v a lue o f y w he n x = 4 is : a ) 7.6 b ) 8 .6 c ) 9 .6 d ) * 1 0 .6 10 .6 4 ) T he e s tim a te d re g re s io n e q ua tio n fo r the d a ta is : a ) y = 26 .3 − 1.6 8 x ̂ b ) y = 28 .3 − 1.78 x ̂ c ) * y = 30 .3 − 1 .8 x ̂ d ) y = 32.3 − 1.9 8 x ̂ y x x y 25 2 5 0 4 25 3 75 9 20 5 10 25 30 1 30 1 16 8 128 6 4 23.2 3.8 38 3 10 3- 1.8 30 .3 30 .3 - 1.8 x 5 ) a ) * 1 9 .0 5 y = 30 .3 - 1.8 (6 ) = ̂ 19 .0 5 b ) 18 .0 5 c ) 17.0 5 d ) 16 .0 5 6 ) M e d ia C a s e Ex p e nd . S a le s B ra nd x y x y C o c a - C o la C la s ic 131.3 1,9 29 .20 25 3 0 3.9 6 17239 .6 9 P e p s i- C o la 9 2.4 1,38 4 .6 0 1279 37.0 4 8 5 37.76 D ie t C o k e 6 0 .4 8 1 .4 4 9 0 8 .5 6 36 4 8 .16 S p rite 5 .7 5 4 1.5 30 16 1.5 310 2.4 9 D r. P e p e r 4 0 .2 5 36 .9 215 8 3.38 16 16 .0 4 M o unta in D e w 29 5 35 .6 15 32.4 8 4 1 7- U p 1 .6 219 .5 25 4 6 .2 134 .5 6 6 0 .0 8 5 7 8 5 1.24 29 5 0 0 73 35 1 9 .7 T he e s tim a te d re g re s io n e q ua tio n fo r the d a ta is : a ) * b ) c ) d ) 1 4 .4 2- 1 5 .4 2 b = ₁ ∑ x y − nx y ̄ y = - 15 .4 2 + 14 .4 2x ̂ ∑ x ² − nx ² ̄ 7) T he m o d e l in the p re v io us q ue s tio n p re d ic ts tha t if m e d ia e x p e nd iture is \$ 70 m il io n, the n a ) to ta l s a le s w o uld b e a b o ut 9 5 4 b ) to ta l s a le s w o uld b e a b o ut 9 74 c ) * t o t a l s a le s w o u ld b e a b o u t 9 4 . y = - 15 .4 2 + 14 .4 2(70 ) = ̂ 9 3.9 8 d ) to ta l s a le s w o uld b e a b o ut 1,0 14 . 8 ) P e rc e nta g e A irline o n T im e C o m p la ints S o uthw e s t 8 1.8 0 .21 C o ntine nta l 76 .6 0 .5 8 N o rthw e s t 76 .6 0 .8 5 U S A irw a y s 75 .7 0 .6 8 U nite d 73.8 0 .74 A m e ric a n 72.2 0 .9 3 D e lta 71.2 0 .72 A m e ric a W e s t 70 .8 1.2 T W A 6 8 .5 1.25 a ) b ) * c ) d ) P e rc e nta g e o n T im e C o m p la ints x y x y 8 1.8 0 .21 17.178 6 9 1.24 76 .6 0 .5 8 4 .4 28 5 8 6 7.5 6 76 .6 0 .8 5 6 5 .1 5 8 6 7.5 6 75 .7 0 .6 8 5 1.4 76 5 730 .4 9 73.8 0 .74 5 4 .6 12 5 4 6 .4 72.2 0 .9 3 6 7.14 6 5 212.8 4 71.2 0 .72 5 1.26 4 5 0 6 9 .4 70 .8 1.2 8 6 .376 5 0 12.6 4 6 8 .5 1.25 8 5 .6 25 4 6 9 2.25 74 .13 3 0 .79 78 5 23.215 4 9 5 9 0 .4 6- 0 .0 7 6 .0 2 y = 6 .0 2 - 0 .0 7x ̂ 9 ) a ) 0 .9 b ) 0 .8 c ) 0 .6 x = 8 0 d ) * 0 .4 0 .4 9 d G iv e n a re fiv e o b s e rv a tio ns fo r tw o v a ria b le s , x a nd y . D ata are from problem (1) 1 0 ) T he S E fo r the m o d e l is : a ) 14 .4 b ) 13.4 c ) * 1 2 .4 S E = ∑ (y − y ) ² = ̂ 12.4 d ) 1 .4 0 .2 2.6 y x 3 1 2.8 25 27.0 4 0 .0 4 7 2 5 .4 1 6 .76 2.5 6 5 3 8 9 0 .0 9 1 4 10 .6 9 6 .76 0 .16 14 5 13.2 36 27.0 427....
View Full Document

## This document was uploaded on 10/27/2011 for the course ECON-E 270 at Indiana.

Ask a homework question - tutors are online