{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Tich-phan-Ly-thuyet-va-bai-tap

# Tich-phan-Ly-thuyet-va-bai-tap - Tran S Tung Tch phan Nhac...

This preview shows pages 1–4. Sign up to view the full content.

Traàn Só Tuøng Tích phaân Trang 1 Nhaéc laïi Giôùi haïn – Ñaïo haøm – Vi phaân 1. Caùc giôùi haïn ñaëc bieät: a) fi = x 0 sinx lim 1 x Heä quaû: fi = x 0 x lim 1 sinx fi = u(x) 0 sinu(x) lim 1 u(x) fi = u(x) 0 u(x) lim 1 sinu(x) b) x x 1 lim 1 e, x R x fi¥ ° ± + = ˛ ² ³ L l Heä quaû: 1 x x 0 lim(1 x) e. fi + = x 0 ln(1 x) lim 1 x fi + = x x 0 e 1 lim 1 x fi - = 2. Baûng ñaïo haøm caùc haøm soá sô caáp cô baûn vaø caùc heä quaû: (c)’ = 0 (c laø haèng soá) 1 (x )' x a a- = a 1 (u )' u u' a a- = a 2 1 1 ' x x ° ± = - ² ³ L l 2 1 u' ' u u ° ± = - ² ³ L l ( ) 1 x ' 2 x = ( ) u' u ' 2 u = x x (e )' e = u u (e )' u'.e = x x (a )' a .lna = u u (a )' a .lna . u' = 1 (ln x )' x = u' (ln u )' u = a 1 (log x ') x.lna = a u' (log u )' u.lna = (sinx)’ = cosx (sinu)’ = u’.cosu 2 2 1 (tgx)' 1 tg x cos x = = + 2 2 u' (tgu)' (1 tg u).u' cos u = = + 2 2 1 (cotgx)' (1 cotg x) sin x - = = - + 2 2 u' (cotgu)' (1 cotg u).u' sin u - = = - + 3. Vi phaân: Cho haøm soá y = f(x) xaùc ñònh treân khoaûng (a ; b) vaø coù ñaïo haøm taïi x (a; b) ˛ . Cho soá gia D x taïi x sao cho x x (a; b) + D ˛ . Ta goïi tích y’. D x (hoaëc f’(x). D x) laø vi phaân cuûa haøm soá y = f(x) taïi x, kyù hieäu laø dy (hoaëc df(x)). dy = y’. D x (hoaëc df(x) = f’(x). D x AÙp duïng ñònh nghóa treân vaøo haøm soá y = x, thì dx = (x)’ D x = 1. D x = D x Vì vaäy ta coù: dy = y’dx (hoaëc df(x) = f’(x)dx)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Tích phaân Traàn Só Tuøng Trang 2 NGUYEÂN HAØM VAØ TÍCH PHAÂN 1. Ñònh nghóa: Haøm soá F(x) ñöôïc goïi laø nguyeân haøm cuûa haøm soá f(x) treân khoaûng (a ; b) neáu moïi x thuoäc (a ; b), ta coù: F’(x) = f(x). Neáu thay cho khoaûng (a ; b) laø ñoaïn [a ; b] thì phaûi coù theâm: F'(a ) f(x) vaø F'(b ) f(b) + - = = 2. Ñònh lyù: Neáu F(x) laø moät nguyeân haøm cuûa haøm soá f(x) treân khoaûng (a ; b) thì : a/ Vôùi moïi haèng soá C, F(x) + C cuõng laø moät nguyeân haøm cuûa haøm soá f(x) treân khoaûng ñoù. b/ Ngöôïc laïi, moïi nguyeân haøm cuûa haøm soá f(x) treân khoaûng (a ; b) ñeàu coù theå vieát döôùi daïng: F(x) + C vôùi C laø moät haèng soá. Ngöôøi ta kyù hieäu hoï taát caû caùc nguyeân haøm cuûa haøm soá f(x) laø f(x)dx. ´ Do ñoù vieát: f(x)dx F(x) C = + ´ Boå ñeà : Neáu F ¢ (x) = 0 treân khoaûng (a ; b) thì F(x) khoâng ñoåi treân khoaûng ñoù. 3. Caùc tính chaát cuûa nguyeân haøm: ( ) f(x)dx ' f(x) = ´ af(x)dx a f(x)dx (a 0) = ´ ´ [ ] f(x) g(x) dx f(x)dx g(x)dx + = + ´ ´ ´ [ ] [ ] f(t)dt F(t) C f u(x) u'(x)dx F u(x) C F(u) C (u u(x)) = + µ = + = + = ´ ´ 4. Söï toàn taïi nguyeân haøm: Ñònh lyù : Moïi haøm soá f(x) lieân tuïc treân ñoaïn [a ; b] ñeàu coù nguyeân haøm treân ñoaïn ñoù. §Baøi 1 : NGUYEÂN HAØM
Traàn Só Tuøng Tích phaân Trang 3 BAÛNG CAÙC NGUYEÂN HAØM Nguyeân haøm cuûa caùc haøm soá sô caáp thöôøng gaëp Nguyeân haøm cuûa caùc haøm soá hôïp (döôùi ñaây u = u(x)) dx x C = + ´ du u C = + ´ 1 x x dx C ( 1) 1 a+ a = + a „ - a + ´ 1 u u du C ( 1) 1 a+ a = + a „ - a + ´ dx ln x C (x 0) x = + ´ du ln u C (u u(x) 0) u = + = ´ x x e dx e C = + ´ u u e du e C = + ´ x x a a dx C (0 a 1) lna = + < ´ u u a a du C (0 a 1) lna = + < ´ cosxdx sinx C = + ´ cosudu sin u C = + ´ sinxdx cosx C = - + ´ sin udu cosu C = - + ´ 2 2 dx (1 tg x)dx tgx

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern