{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Bohr - E =-2.18 x 10-18 J(1/n2 = energy in hydrogen atom o...

This preview shows page 1. Sign up to view the full content.

line spectra  - spectrum containing radiation of specific wavelengths   monochromatic radiation - consists of a single wavelength spectrum - separation of radiation into different wavelengths continuous spectrum - contains light of all wavelengths Rydberg equation  - allowed calculation of wavelengths of all spectral lines   1/l = (Rh)(1/n12 - 1/n22) = [(2.18 x 10-18 J) / hc] (1/n12 - 1/n22) Rh = 1.096776 x 107 m-1 Bohr's Model  - electrons moving in circular paths lose energy and spiral towards nucleus   only orbits w/ certain radii, dependent on energies of electrons electron in allowed energy state has specific energy, doesn't radiate energy energy emitted/absorbed by electrons when it changes energy states
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: E = (-2.18 x 10-18 J)(1/n2) = energy in hydrogen atom o n = integer from 1 to = quantum number o ground state - lowest energy state o excited state - higher energy state o E = (-2.18 x 10-18 J)(1/2) = 0 DE = Efinal - Einitial = Ephoton = hn = hc/l = (-2.18 x 10-18 J)(1/nf2 - 1/ni2) o ni = initial energy state o nf = final energy state o l = hc / DE o n = = DE / h doesn't explain spectra of any atom besides hydrogen electrons actually show properties of waves Find the de Broglie wavelength of an electron w/ velocity 5.97 x 106 m/s Given: o l = h/(mv) o m = 9.11 x 10-28 g = 9.11 x 10-31 kg o h = 6.63 x 10-34 o v = 5.97 x 106 l = (6.63 x 10-34) / (9.11 x 10-31 x 5.97 x 106) l = 1.22 x 10-10 m...
View Full Document

{[ snackBarMessage ]}