This preview shows pages 1–2. Sign up to view the full content.

7. (a) Right when v ( t ) . 0, which is when cos t . 0, i.e., when 0 # t , } p 2 } or } 3 2 p } , t # 2 p . Left when cos t , 0, i.e., when } p 2 } , t , } 3 2 p } . Stopped when cos t 5 0, i.e., when t 5 } p 2 } or } 3 2 p } . (b) Displacement 5 E 2 p 0 e sin t cos t dt 5 3 e sin t 4 5 [ e 0 2 e 0 ] 5 0 (c) Distance 5 E 2 p 0 ) e sin t cos t ) dt 5 E p /2 0 e sin t cos t dt 1 E 3 p /2 p /2 2 e sin t cos t dt 1 E 2 p 3 p /2 e sin t cos t dt 5 ( e 2 1) 1 1 e 2 } 1 e } 2 1 1 1 2 } 1 e } 2 5 2 e 2 } 2 e } < 4.7 8. (a) Right when v ( t ) . 0, which is when 0 , t # 3. Left: never, since v ( t ) is never negative. Stopped when t 5 0. (b) Displacement 5 E 3 0 } 1 1 t t 2 } dt 5 3 } 1 2 } ln (1 1 t 2 ) 4 5 } 1 2 } [ln (10) 2 ln (1)] 5 } ln 2 10 } < 1.15 (c) Distance 5 E 3 0 } 1 1 t t 2 } dt 5 } ln 2 10 } < 1.15 9. (a) v ( t ) 5 E a ( t ) dt 5 t 1 2 t 3/2 1 C , and since v (0) 5 0, v ( t ) 5 t 1 2 t 3/2 . Then v (9) 5 9 1 2(27) 5 63 mph. (b) First convert units: t 1 2 t 3/2 mph 5 } 36 t 00 } 1 } 1 t 8 3 0 /2 0 } mi/sec. Then Distance 5 E 9 0 1 } 36 t 00 } 1 } 1 t 8 3 0 /2 0 } 2 dt 5 3 } 72 t 0 2 0 } 1 } 4 t 5 5 0 /2 0 } 4 5 31 } 8 9 00 } 1 } 5 2 0 7 0 } 2 2 0 4 5 0.06525 mi 5 344.52 ft. 10. (a) Displacement 5 E 4 0 ( t 2 2) sin t dt 5 3 sin t 2 t cos t 1 2 cos t 4 5 [(sin 4 2 4 cos 4 1 2 cos 4) 2 2] < 2 1.44952 m (b) Because the velocity is negative for 0 , t , 2, positive for 2 , t , p , and negative for p , t # 4, Distance 5 E 2 0 2 ( t 2 2) sin t dt 1 E p 2 ( t 2 2) sin t dt 1 E 4 p 2 ( t 2 2) sin t dt 5 [(2 2 sin 2) 1 ( p 2 sin 2 2 2) 1 ( p 1 2 cos 4 2 sin 4 2 2)] 5 2 p 1 2 cos 4 2 2 sin 2 2 sin 4 2 2 < 1.91411 m. 11. (a) v ( t ) 5 E a ( t ) dt 5 E 2 32 dt 5 2 32 t 1 C 1 , where C 1 5 v (0) 5 90. Then v (3) 5 2 32(3) 1 90 5 2 6 ft/sec. (b) s ( t ) 5 E v ( t ) dt 5 2 16 t 2 1 90 t 1 C 2 , where C 2 5 s (0) 5 0. Solve s ( t ) 5 0: 2 16 t 2 1 90 t 5 2 t ( 2 8 t 1 45) 5 0 when t 5 0 or t 5 } 4 8 5 } 5 5.625 sec. The projectile hits the ground at 5.625 sec. (c) Since starting height 5 ending height, Displacement 5 0. (d) Max. Height 5 s 1 } 5.6 2 25 } 2 5 2 16 1 } 5.6 2 25 } 2 2 1 90 1 } 5.6 2 25 } 2 5 126.5625, and Distance 5 2(Max. Height) 5 253.125 ft. 12. Displacement 5 E c 0 v ( t ) dt 5 2 4 1 5 2 24 5 2 23 cm 13. Total distance 5 E c 0 ) v ( t ) ) dt 5 4 1 5 1 24 5 33 cm 14. At t 5 a , s 5 s (0) 1 E a 0 v ( t ) dt 5 15 2 4 5 11. At t 5 b , s 5 s (0) 1 E b 0 v ( t ) dt 5 15 2 4 1 5 5 16. At t 5 c , s 5 s (0) 1 E c 0 v ( t ) dt 5 15 2 4 1 5 2 24 5 2 8. 15. At t 5 a , where } d d v t } is at a maximum (the graph is steepest upward). 16. At t 5 c , where } d d v t } is at a maximum (the graph is steepest upward). 17. Distance 5 Area under curve 5 4 1 } 1 2 } ? 1 ? 2 2 5 4 (a) Final position 5 Initial position 1 Distance 5 2 1 4 5 6; ends at x 5 6. (b) 4 meters 18. (a) Positive and negative velocities cancel: the sum of signed areas is zero. Starts and ends at x 5 2. (b) Distance 5 Sum of positive areas 5 4(1 ?

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern