{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

m250-1test

# m250-1test - 1(10 5 Determine t so that the vector v...

This preview shows pages 1–9. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1. (10+5) Determine t so that the vector v = (75,4,0) lies in the span, of v1 = (—1,1,1) and v2- — (2, —3, 1). (b) After having found It, express your answer as an explicit linear combination. tin—1.1 anal h 46d: c|v‘+c2_v1=\/. l U“ H .L‘ o -l -l:+L+ 1 ‘ 0 Jc .\ 2. '9 K3+3£1 -t+q. o "I o o thz 2. (15) Find a linearly independent set of vectors that has the same span as v1,v2, V3 where v1 = (.1, -—2,1), V2 2 (—2,4, —1), V3 = (—4, 8,—1). Ne maul 'ko So‘Qm C‘V, + cht+c3v\$=o «Mi elm/LL— 5% W‘WW—m °\,‘z,°3- ﬂue V V V3 M0. DAM Dug-‘1’ . C‘V|+C1 V,_+C%V :0 a_—:), 1 "2 "'1' a. o o *2 '+ 8 c2 3 O L I -\ «l 3‘ Rz—a RL-W—‘U R3 "7 R34“ ‘ ‘ 2 __ q. ‘ ‘2 " H o l 3 ———9 O O O R1623 O O O o l 3 - ,3c _. — L‘ :4 o C‘- — 3 C‘ 2C1 t3 =9 C = ’1‘?) c +- 3c3 =0 \ 3. (15) If possible determine 1" so that the displayed set S is a set of dependent vectors. S: {(1,2,—1), (2,1,—3), (—1,7,7~)}. v‘ v2. v3 CIV‘+L1V1+C5V3;0 . I 7- -l c. o z ‘ 1 C2 : O -l -3 ’5' c3 0 Its-elm“ Raﬁ-"R! I 1 _, g 7. —-I ___; o -l 3 O ‘3 ‘1 K‘QJSE" o —-l 4-" 0 -ul IL“ I '2. ~l RsﬁRBtez O _| 3 Li} ¢-Lk:0 E) W W‘- 3% “t ”“2”?” —-cz_+3c3=o C1: 3C3, Cl: ~57? Sci.- Csz 7:21:3’ Clz—S UL.“ +3v + («l 1 0:0 l 2 So QM ”3""; W’S‘T‘M‘OQ Call/c1"?> NOT ALLZ—em 4,3 6:“ ,ullvgg W 4. (7+7)(a) Compute the inverse of the displayed matrix. (b) Express the displayed matrix as a product of elementary matrices. . O 2 —1 A: 1 -—1 2 2 —1 3 2. -—| 3 o o l l -‘ 2 O i O ‘ "I ——9 O l 7.. --l i 0 0 O ti2.92.3 2. R‘s—9R3 -232. 1 .\ z o I o o l al 0 -7. I o o l x“ q. -2. R2. ——-> [31+ 23 l ”I 0 — 2 -—7 H o ‘ o l 2 "‘ o o l l H '7— R‘ —-> KM; ‘ o o _‘ -.S' 3 o l O a 7- "'l ‘ ~7— 5. (14) Find the L, U decomposition of the displayed matrix: R1", R2“ 22' '. E. 1 _| 6.(10+5) For the matrix A displayed below, compute A3 — 5A2 + 9A — 4I (b) Is A invertible? You have to give a reason. Hint: You do not need to make a separate computation, use part (a). (a) Al— " 'L’ ‘ it 7 -L+ -7_ i l _\o -H 5— A3: 27 12. "'H .1 g 0 ulO —-\\ A3— sA‘HA-uz :17 I7. -\ '5’ + q ”I O “r o 13 a7 4 + o 4 2.0 4 -3f 2.0 —5' —S' O +4) Decide if the following statements are true or false. If you decide they are ample to indicate why. as a column of zeros then the matrix :10 = 0 has a non-trivial solution 7. ( 4+4 false give an ex (a) If a n x n matrix h (b) A is an n x n matrix. A a: = 0). Then A is invertible. (c) Given the columns of a 3 x 3 matrix are all distinct. The column vectors are linearly is not invertible. ( that is a solution other than 2- 9 3 i9. W V v2. v3 ...
View Full Document

{[ snackBarMessage ]}